Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 6
Article Contents

SU Junjie, LIU Yongbing, WANG Heli, GUO Wei, WANG Jialiang, WANG Hongpeng, ZHANG Yuanhao. Characteristics and Effects of Modified Attapulgite for Stabilization of Cadmium Contaminated Alkaline Soils[J]. Rock and Mineral Analysis, 2022, 41(6): 1029-1039. doi: 10.15898/j.cnki.11-2131/td.202203160053
Citation: SU Junjie, LIU Yongbing, WANG Heli, GUO Wei, WANG Jialiang, WANG Hongpeng, ZHANG Yuanhao. Characteristics and Effects of Modified Attapulgite for Stabilization of Cadmium Contaminated Alkaline Soils[J]. Rock and Mineral Analysis, 2022, 41(6): 1029-1039. doi: 10.15898/j.cnki.11-2131/td.202203160053

Characteristics and Effects of Modified Attapulgite for Stabilization of Cadmium Contaminated Alkaline Soils

More Information
  • BACKGROUND

    With the high specific surface area, rich functional groups and strong adsorption capacity, attapulgite (AT) and its modified materials have become a research hotspot in the field of heavy metal remediation of farmland soil.

    OBJECTIVES

    To investigate the stabilization mechanism and effect of different modified AT for Cd-contaminated alkaline soil.

    METHODS

    AT materials were modified by sodium hydroxide and ferric chloride. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), and nitrogen adsorption/desorption test (BET-BJH) were used to analyze the microstructure and surface morphology of the modified AT. Combined with the characterization results, the passivation mechanism was analyzed, and the indoor simulated Cd-contaminated alkaline soil cultivation experiment and the lettuce potting experiment were carried out. Soil Cd content was determined by atomic absorption spectrophotometry. The effect differences between single application and compound application of two modified attapulgites in Cd-contaminated alkaline soil were investigated.

    RESULTS

    Alkali treatment made the Si-O groups and structural negative charges increase, and the number of micropores and specific surface area of the iron-modified attapulgite (IM) also increased. The internal pore distribution and surface morphology of attapulgite can be significantly changed in two types of modification, which can also improve their adsorption capacity. Alkali-modified attapulgite (AM) can improve soil pH and cation exchange (CEC) by stronger chemical adsorption capacity, while IM has stronger physical adsorption capacity and strong chemical adsorption capacity, which makes soil pH decrease and CEC rise. To a certain extent, the compound application of the two materials can reduce soil pH and improve CEC, which can improve their stabilization effect. After using the passivation material of AM: IM ratio of 3:1 and 2.00% of the soil mass, the available DTPA-Cd content was reduced by 33.85%, and the BCF of lettuce was reduced by 24.49%. The treatment attained the best stabilization effect.

    CONCLUSIONS

    IM has good stabilization effect on heavy metal Cd in alkaline soil. AM should be avoided for single application, and it can be recombined with other stabilization materials to achieve better reduction of soil Cd pollution while improving the quality of alkali soil.

  • 加载中
  • [1] Wan X M, Yang J X, Song W. Pollution status of agricultural land in China: Impact of land use and geographical position[J]. Soil & Water Research, 2018, 13(4): 234-242.

    Google Scholar

    [2] 武超, 周顺江, 王华利, 等. 生物炭和锌对土壤镉赋存形态及小麦镉积累的影响[J]. 环境科学研究, 2022, 35(1): 202-210. doi: 10.13198/j.issn.1001-6929.2021.10.15

    CrossRef Google Scholar

    Wu C, Zhou S J, Wang H L, et al. Effects of biochar and zinc on soil cadmium fractions and wheat accumulation[J]. Research of Environmental Sciences, 2022, 35(1): 202-210. doi: 10.13198/j.issn.1001-6929.2021.10.15

    CrossRef Google Scholar

    [3] Wang P, Chen H, Kopittke P M, et al. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048. doi: 10.1016/j.envpol.2019.03.063

    CrossRef Google Scholar

    [4] 王进进, 杨行健, 胡峥, 等. 基于风险等级的重金属污染耕地土壤修复技术集成体系研究[J]. 农业环境科学学报, 2019, 38(2): 249-256.

    Google Scholar

    Wang J J, Yang X J, Hu Z, et al. Research on the risk level-based technology integration for the remediation of heavy metals polluted farmland[J]. Journal of Agricultural Environment Science, 2019, 38(2): 249-256.

    Google Scholar

    [5] 杨京民, Bonheur G. 镉、砷复合污染土壤钝化修复研究进展[J]. 环境污染与防治, 2021, 43(9): 1189-1195, 1200. doi: 10.15985/j.cnki.1001-3865.2021.09.019

    CrossRef Google Scholar

    Yang J M, Bonheur G, et al. The immobilization remediation of cadmium and arsenic combined contaminated soils: A review[J]. Environmental Pollution and Control, 2021, 43(9): 1189-1195, 1200. doi: 10.15985/j.cnki.1001-3865.2021.09.019

    CrossRef Google Scholar

    [6] 邢金峰, 仓龙, 任静华. 重金属污染农田土壤化学钝化修复的稳定性研究进展[J]. 土壤, 2019, 51(2): 224-234. doi: 10.13758/j.cnki.tr.2019.02.003

    CrossRef Google Scholar

    Xing J F, Cang L, Ren J H. Remediation stability of in situ chemical immobilization of heavy metals contaminated soil: A review[J]. Soils, 2019, 51(2): 224-234. doi: 10.13758/j.cnki.tr.2019.02.003

    CrossRef Google Scholar

    [7] 陈怀满. 环境土壤学[M]. 北京: 科学出版社, 2005: 397-412.

    Google Scholar

    Chen H M. Environmental soil science[M]. Beijing: Science Press, 2005: 397-412.

    Google Scholar

    [8] 谢玉峰, 刘迪, 陈振宁, 等. 耕地土壤重金属污染钝化修复技术研究进展[J]. 江苏农业科学, 2020, 48(18): 30-36. doi: 10.15889/j.issn.1002-1302.2020.18.006

    CrossRef Google Scholar

    Xie Y F, Liu D, Chen Z N, et al. Research progress on passivation remediation technology of heavy metal pollution in cultivated soil[J]. Jiangsu Agricultural Sciences, 2020, 48(18): 30-36. doi: 10.15889/j.issn.1002-1302.2020.18.006

    CrossRef Google Scholar

    [9] 陈哲, 冯秀娟, 朱易春, 等. 天然及改性凹凸棒对稀土尾矿土壤中重金属铅的钝化效果研究[J]. 岩矿测试, 2020, 39(6): 847-855. doi: 10.15898/j.cnki.11-2131/td.202006250096

    CrossRef Google Scholar

    Chen Z, Feng X J, Zhu Y C, et al. Study on the passivation effect of natural and modified attapulgite on heavy metal lead in soils of the rare earth tailings[J]. Rock and Mineral Analysis, 2020, 39(6): 847-855. doi: 10.15898/j.cnki.11-2131/td.202006250096

    CrossRef Google Scholar

    [10] Xu Y, Liang X, Xu Y, et al. Remediation of heavy metal-polluted agricultural soils using clay minerals: A review[J]. Pedosphere, 2017, 27(2): 193-204. doi: 10.1016/S1002-0160(17)60310-2

    CrossRef Google Scholar

    [11] 朱维, 刘代欢, 陈建清, 等. 黏土矿物在土壤重金属污染中的应用研究进展[J]. 土壤通报, 2018, 49(2): 499-504. doi: 10.19336/j.cnki.trtb.2018.02.34

    CrossRef Google Scholar

    Zhu W, Liu D H, Chen J Q, et al. Research progress on the application of clay minerals in the remediation of cadmium polluted farmland[J]. Chinese Journal of Soil Science, 2018, 49(2): 499-504. doi: 10.19336/j.cnki.trtb.2018.02.34

    CrossRef Google Scholar

    [12] 谢晶晶, 陈天虎, 刘海波, 等. 苏皖地区凹凸棒石黏土的特征和应用发展方向[J]. 硅酸盐学报, 2018, 46(5): 746-754. doi: 10.14062/j.issn.0454-5648.2018.05.20

    CrossRef Google Scholar

    Xie J J, Chen T H, Liu H B, et al. Development and application of palygorskite clays from Jiangsu and Anhui Provinces[J]. Journal of the Chinese Ceramic Society, 2018, 46(5): 746-754. doi: 10.14062/j.issn.0454-5648.2018.05.20

    CrossRef Google Scholar

    [13] Wang W B, Wang F F, Kang Y R, et al. Enhanced adsorptive removal of methylene blue from aqueous solution by alkali-activated palygorskite[J]. Water, Air & Soil Pollution, 2015, 226(3): 1-13.

    Google Scholar

    [14] 陶玲, 仝云龙, 余方可, 等. 碱改性凹凸棒石对土壤中镉化学形态及环境风险的影响[J]. 岩矿测试, 2022, 41(1): 109-119. doi: 10.15898/j.cnki.11-2131/td.202108270108

    CrossRef Google Scholar

    Tao L, Tong Y L, Yu F K, et al. Chemical speciation and environmental risk of Cd in soil stabilized with alkali-modified attapulgite[J]. Rock and Mineral Analysis, 2022, 41(1): 109-119. doi: 10.15898/j.cnki.11-2131/td.202108270108

    CrossRef Google Scholar

    [15] 刘爱平, 黄阳, 王维清, 等. 铁改性凹凸棒土对Sb(Ⅴ)的吸附研究[J]. 非金属矿, 2018, 41(6): 26-29. doi: 10.3969/j.issn.1000-8098.2018.06.008

    CrossRef Google Scholar

    Liu A P, Huang Y, Wang W Q, et al. Study on the adsorption of Sb(Ⅴ) by iron modified attapulgite[J]. Non-Metallic Mines, 2018, 41(6): 26-29. doi: 10.3969/j.issn.1000-8098.2018.06.008

    CrossRef Google Scholar

    [16] 耿健, 杨盼, 唐婉莹. 铁改性热处理凹凸棒颗粒对水体磷的去除效果[J]. 环境工程, 2020, 38(10): 114-119. doi: 10.11835/j.issn.1000-582X.2019.267

    CrossRef Google Scholar

    Geng J, Yang P, Tang W Y. Phosphorus removal by the iron modified thermally treated granular attapulgite clay[J]. Environmental Engineering, 2020, 38(10): 114-119. doi: 10.11835/j.issn.1000-582X.2019.267

    CrossRef Google Scholar

    [17] 窦韦强, 安毅, 秦莉, 等. 稻米镉的生物富集系数与其影响因素的量化关系[J]. 土壤, 2021, 53(4): 788-793. doi: 10.13758/j.cnki.tr.2021.04.016

    CrossRef Google Scholar

    Dou W Q, An Y, Qin L, et al. Quantitative relationship between the bioconcentration factor of rice cadmium and its influencing factors[J]. Soils, 2021, 53(4): 788-793. doi: 10.13758/j.cnki.tr.2021.04.016

    CrossRef Google Scholar

    [18] 朱永峰, 宗莉, 于惠, 等. 凹凸棒石基新型水处理吸附材料研究进展[J]. 硅酸盐通报, 2020, 39(7): 2308-2320. doi: 10.16552/j.cnki.issn1001-1625.2020.07.040

    CrossRef Google Scholar

    Zhu Y F, Zong L, Yu H, et al. Research progress of the novel adsorbent for water treatment based on attapulgite[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(7): 2308-2320. doi: 10.16552/j.cnki.issn1001-1625.2020.07.040

    CrossRef Google Scholar

    [19] White R D, Bavykin D V, Walsh F C. The stability of halloysite nanotubes in acidic and alkaline aqueous suspensions[J]. Nanotechnology, 2012, 23(6): 65705-65715. doi: 10.1088/0957-4484/23/6/065705

    CrossRef Google Scholar

    [20] Wei X Y, Sun Y L, Pan D Q, et al. Adsorption properties of Na-palygorskite for Cs sequestration: Effect of pH, ionic strength, humic acid and temperature[J]. Applied Clay Science, 2019, 183: 105363. doi: 10.1016/j.clay.2019.105363

    CrossRef Google Scholar

    [21] Wang Q, Wen J, Hu X H, et al. Immobilization of Cr(Ⅵ) contaminated soil using green-tea impregnated attapulgite[J]. Journal of Cleaner Production, 2021, 278: 123967. doi: 10.1016/j.jclepro.2020.123967

    CrossRef Google Scholar

    [22] Wan S L, Li Y, Cheng S, et al. Cadmium removal by FeOOH nanoparticles accommodated in biochar: Effect of the negatively charged functional groups in host[J]. Journal of Hazardous Materials, 2022, 421: 126807. doi: 10.1016/j.jhazmat.2021.126807

    CrossRef Google Scholar

    [23] Bardestani R, Patience G S, Kaliaguine S. Experimental methods in chemical engineering: Specific surface area and pore size distribution measurements—BET, BJH and DFT[J]. Canadian Journal of Chemical Engineering, 2019, 97: 2781-2791. doi: 10.1002/cjce.23632

    CrossRef Google Scholar

    [24] 闫和平, 杨甫, 段中会, 等. 黄陇煤田转角勘查区煤的微观孔隙结构特征及其影响因素[J]. 中国煤炭地质, 2022, 34(1): 18-25, 44.

    Google Scholar

    Yan H P, Yang F, Duan Z H, et al. Microscopic pore structure characteristics coal microscopic pore geometry features and its impact factors in Zhuanjiao exploration area, Huanglong Coalfield[J]. Coal Geology of China, 2022, 34(1): 18-25, 44.

    Google Scholar

    [25] 王超勇, 鲍园, 琚宜文. 利用FE-SEM、HIP、N2吸附实验表征生物气化煤系有机岩储层微观孔隙结构演化[J]. 地球科学, 2020, 45(1): 251-262.

    Google Scholar

    Wang C Y, Bao Y, Ju Y W. Micropore structure evolution of organic matters in coal measures due to bioconversion using FE-SEM, HIP and N2 adsorption experiments[J]. Earth Science, 2020, 45(1): 251-262.

    Google Scholar

    [26] Boudriche L, Chamayou A, Calvet R, et al. Influence of different dry milling processes on the properties of an attapulgite clay, contribution of inverse gas chromatography[J]. Powder Technology, 2014, 254: 352-363. doi: 10.1016/j.powtec.2014.01.041

    CrossRef Google Scholar

    [27] 丁守一, 黄亚继, 陈浩, 等. CuCl2改性磁性凹凸棒土的脱汞性能[J]. 化工进展, 2020, 39(3): 1187-1195.

    Google Scholar

    Ding S Y, Huang Y J, Chen H, et al. Mercury removal performance of CuCl2-modified magnetic attapulgite[J]. Chemical Industry and Engineering Progress, 2020, 39(3): 1187-1195.

    Google Scholar

    [28] Kragović M, Daković A, Marković M, et al. Characterization of lead sorption by the natural and Fe(Ⅲ)-modified zeolite[J]. Applied Surface Science, 2013, 283(1): 764-774.

    Google Scholar

    [29] Lu H L, Li K W, Nkoh J, et al. Effects of pH variations caused by redox reactions and pH buffering capacity on Cd(Ⅱ) speciation in paddy soils during submerging/draining alternation[J]. Ecotoxicology and Environmental Safety, 2022, 234: 113409. doi: 10.1016/j.ecoenv.2022.113409

    CrossRef Google Scholar

    [30] 赵维俊, 敬文茂, 马剑, 等. 祁连山哈溪林区典型植被土壤阳离子交换量和交换性盐基离子的变化特征[J]. 中国水土保持, 2019(11): 17-20. doi: 10.3969/j.issn.1000-0941.2019.11.008

    CrossRef Google Scholar

    Zhao W J, Jing W M, Ma J, et al. Variation characteristics of soil cation exchange capacity and exchangeable base cations of typical vegetation in Haxi forest region of Qilian Mountains[J]. Soil and Water Conservation in China, 2019(11): 17-20. doi: 10.3969/j.issn.1000-0941.2019.11.008

    CrossRef Google Scholar

    [31] 窦韦强, 安毅, 秦莉, 等. 土壤pH对镉形态影响的研究进展[J]. 土壤, 2020, 52(3): 439-444. doi: 10.13758/j.cnki.tr.2020.03.002

    CrossRef Google Scholar

    Dou W Q, An Y, Qin L, et al. Advances in effects of soil pH on cadmium form[J]. Soils, 2020, 52(3): 439-444. doi: 10.13758/j.cnki.tr.2020.03.002

    CrossRef Google Scholar

    [32] 雍莹莹, 徐应明, 黄青青, 等. 巯基坡缕石-硫酸锰复配对碱性土壤镉污染钝化阻控效应[J]. 农业环境科学学报, 2021, 40(12): 2681-2692. doi: 10.11654/jaes.2021-0426

    CrossRef Google Scholar

    Yong Y Y, Xu Y M, Huang Q Q, et al. Immobilization effect of mercaptopalygorskite and manganese sulfate on Cd pollution in alkaline soil[J]. Journal of Agro-Environment Science, 2021, 40(12): 2681-2692. doi: 10.11654/jaes.2021-0426

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(2138) PDF downloads(81) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint