Citation: | LIU Yue, LIN Dong, WANG Jilu, LI Jing, WANG Xin. Determination of Silver in Soil and Stream Sediments by ICP-MS/MS with Four Collision/Reaction Modes[J]. Rock and Mineral Analysis, 2022, 41(6): 1017-1028. doi: 10.15898/j.cnki.11-2131/td.202112230206 |
It is difficult to accurately determine the content of Ag in soil and sediment due to the mass spectrum interference of niobium, zirconium oxide and hydroxide during inductively coupled plasma-mass spectrometry (ICP-MS) analysis.
To develop methods for the determination of trace Ag in soil and sediment samples by four collision/reaction modes.
The changes of mass spectrum signals of 93Nb16O+, 91Zr16OH2+, 92Zr16OH+ and 109Ag+ in helium, oxygen and ammonia were determined using inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). The interference elimination ability and elimination mechanism of different collision/reaction modes were investigated. The samples were digested by HCl-HNO3-HF-HClO4. The content of Ag in soil and stream sediments was determined by helium MS/MS mode, oxygen MS/MS mode, ammonia MS/MS mode and ammonia Mass-Shift mode.
With the optimal gas flow rate in the tank of the four collision/reaction modes, the interference degree of niobium and zirconium on Ag were decreased more than 20, 1500, 1500 and 2000 times, respectively. The detection limits of the method were 0.005mg/kg, 0.002mg/kg, 0.003mg/kg and 0.003mg/kg, respectively. The accuracy and precision were verified by national reference materials of soil and sediment, while the relative errors of measured values and certified values were -1.4%-84.3%, -7.6%-7.2%, -15.0%-10.0% and -12.5%-8.6%, respectively. The relative standard deviations were 1.5%-6.3%, 1.4%-8.3%, 1.4%-5.9% and 0.7%-8.2%, respectively.
Helium MS/MS mode has a low capacity to eliminate mass spectrometry interference, and is suitable for the determination of samples with little interference of niobium and zirconium. Oxygen MS/MS, ammonia MS/MS and ammonia Mass-Shift modes have a strong ability to eliminate mass spectrometry interference, which can be used for the determination of trace Ag in soil and stream sediments; and have the advantages of lower detection limit, wider linear range, and simultaneous determination of multiple elements, when compared with the industry standard DZ/T 0279.11—2016.
[1] | 赵学沛. 微波消解-石墨炉原子吸收光谱法测定痕量银的研究[J]. 岩石矿物学杂志, 2019, 38(2): 254-258. doi: 10.3969/j.issn.1000-6524.2019.02.009 Zhao X P. Determination of trace amounts of silver by microwave digestion graphite furnace atomic absorption spectrometry[J]. Acta Petrologica et Mineralogica, 2019, 38(2): 254-258. doi: 10.3969/j.issn.1000-6524.2019.02.009 |
[2] | 夏辉, 张永花, 李景文, 等. 石墨炉原子吸收光谱法测定化探样中痕量银的方法改进[J]. 岩矿测试, 2013, 32(1): 48-52. doi: 10.3969/j.issn.0254-5357.2013.01.009 Xia H, Zhang Y H, Li J W, et al. An improved method for determination of trace silver in geochemical exploration samples by graphite furnace atomic absorption spectrometry[J]. Rock and Mineral Analysis, 2013, 32(1): 48-52. doi: 10.3969/j.issn.0254-5357.2013.01.009 |
[3] | 谭龙奇. 直接滴加液体缓冲剂CCD-Ⅰ型交流电弧直读发射光谱法测定土壤中银锡[J]. 中国无机分析化学, 2020, 10(2): 39-41. doi: 10.3969/j.issn.2095-1035.2020.02.008 Tan L Q. Determination of Ag and Sn in soil by direct addition of liquid buffer CCD-Ⅰ emission spectrometer[J]. Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(2): 39-41. doi: 10.3969/j.issn.2095-1035.2020.02.008 |
[4] | 黄海波, 沈加林, 陈宇, 等. 全谱发射光谱仪应用于分析地质样品中的银锡硼钼铅[J]. 岩矿测试, 2020, 39(4): 555-565. Huang H B, Shen J L, Chen Y, et al. Simultaneous determination of silver, boron, tin, molybdenum and lead in geological samples by atomic emission spectrometer with full spectrum[J]. Rock and Mineral Analysis, 2020, 39(4): 555-565. |
[5] | 肖细炼, 王亚夫, 陈燕波, 等. 交流电弧光电直读发射光谱法测定地球化学样品中银硼锡[J]. 冶金分析, 2018, 38(7): 27-32. Xiao X L, Wang Y F, Chen Y B, et al. Determination of silver, boron and tin in geochemical samples by alternating current arc optoelectronic direct reading emission spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 27-32. |
[6] | 黄俐, 陈秀梅, 张晔霞. 微波消解-电感耦合等离子体质谱法测定土壤中的银[J]. 环境科学导刊, 2020, 39(4): 94-96. Huang L, Chen X M, Zhang Y X. Determination of silver in soil by microwave digestion method and inductively coupled plasma-mass spectrometry[J]. Environmental Science Survey, 2020, 39(4): 94-96. |
[7] | 于亚辉, 闫红岭, 陈浩凤, 等. 电感耦合等离子体质谱法测定地球化学样品中的银[J]. 理化检验(化学分册), 2016, 52(7): 834-836. Yu Y H, Yan H L, Chen H F, et al. Determination of silver in geochemical samples by inductively coupled plasma mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2016, 52(7): 834-836. |
[8] | 刘静波, 张更宇. 全自动消解电感耦合等离子体质谱仪测定环境土壤中铍钡铊银[J]. 分析试验室, 2018, 37(2): 207-211. Liu J B, Zhang G Y. Determination of Be, Ba, Tl and Ag in environmental soil by inductively coupled plasma mass spectrometry with automatic digestion instrument[J]. Chinese Journal of Analysis Laboratory, 2018, 37(2): 207-211. |
[9] | 张志喜, 黄惠琴. 电感耦合等离子体质谱法测定地球化学样品中的银、砷、锑、铋[J]. 中国无机分析化学, 2014, 4(1): 46-49. doi: 10.3969/j.issn.2095-1035.2014.01.012 Zhang Z X, Huang H Q. Determination of silver, arsenic, antimony and bismuth in geochemical samples using inductively coupled plasma mass spectrometry together with aqua regia decomposition[J]. Chinese Journal of Inorganic Analytical Chemistry, 2014, 4(1): 46-49. doi: 10.3969/j.issn.2095-1035.2014.01.012 |
[10] | 杨艳明. 电感耦合等离子体质谱法测定水系沉积物中银铜砷锑铋镉[J]. 冶金分析, 2019, 39(7): 58-64. Yang Y M. Determination of silver, copper, arsenic, antimony, bismuth and cadmium in stream sediment by inductively coupled plasma mass spectrometry[J]. Metallurgical Analysis, 2019, 39(7): 58-64. |
[11] | Wu Y, Huang D M, Feng T, et al. Determination of silver in geological samples using aerosol dilution ICP-MS after water-bath extraction with inverse aqua regia[J]. Atomic Spectroscopy, 2021, 42(6): 374-382. |
[12] | 刘海明, 武明丽, 成景特. 酸溶分解-电感耦合等离子体质谱内标法测定地质样品中的痕量银[J]. 岩矿测试, 2021, 40(3): 444-450. Liu H M, Wu M L, Cheng J T. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with acid decomposition and internal standard calibration[J]. Rock and Mineral Analysis, 2021, 40(3): 444-450. |
[13] | 刘彤彤, 钱银弟, 黄登丽. 磷酸沉淀分离-电感耦合等离子体质谱法测定化探样品中的痕量银[J]. 岩矿测试, 2021, 40(5): 650-658. Liu T T, Qian Y D, Huang D L. Determination of trace silver in geological samples by inductively coupled plasma-mass spectrometry with phosphoric acid precipitation separation[J]. Rock and Mineral Analysis, 2021, 40(5): 650-658. |
[14] | 刘彤彤, 黄登丽. 王水溶样-电感耦合等离子体质谱法测定化探样品中痕量银[J]. 冶金分析, 2021, 41(7): 61-66. Liu T T, Huang D L. Determination of trace silver in geological samples by inductively coupled plasma mass spectrometry after sample dissolution with aqua regia[J]. Metallurgical Analysis, 2021, 41(7): 61-66. |
[15] | 刘向磊, 孙文军, 文田耀, 等. 负载泡塑富集-电感耦合等离子体质谱法测定地质样品中痕量金和银[J]. 分析化学, 2015, 43(9): 1371-1376. Liu X L, Sun W J, Wen T Y, et al. Determination of Au and Ag in geological samples by loaded polyurethane foam-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2015, 43(9): 1371-1376. |
[16] | 高玉花, 毕建玲, 殷学博. P507负载泡塑分离-ICP-MS测定地质样品中的痕量银[J]. 山东国土资源, 2015, 31(12): 70-73. Gao Y H, Bi J L, Yin X B. Determination of trace Ag in geological samples by using P507 to separate ICP-MS loaded polyfoam[J]. Shandong Land and Resources, 2015, 31(12): 70-73. |
[17] | 徐娟, 胡兆初, 刘勇胜, 等. 膜去溶-电感耦合等离子质谱测定21种国际地质标样中的银[J]. 分析化学, 2008, 36(11): 1493-1498. Xu J, Hu Z C, Liu Y S, et al. Direct determination of Ag in 21 international geological reference materials by membrane desolvation-inductively coupled plasma-mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2008, 36(11): 1493-1498. |
[18] | 朱志刚, 李美丽, 孙元芳, 等. ICP-MS测定银的干扰现象分析与方法建立[J]. 分析仪器, 2016(5): 70-74. Zhu Z G, Li M L, Sun Y F, et al. Analysis of interference phenomenon for determination of silver by ICP-MS[J]. Analytical Instrumentation, 2016(5): 70-74. |
[19] | 薛志伟, 乔宁强, 朱晓贤, 等. ICP-MS测定土壤和水系沉积物中的微量银[J]. 中国测试, 2015, 41(3): 51-54. Xue Z W, Qiao N Q, Zhu X X, et al. Determination of trace silver in soil and water sediments by ICP-MS[J]. China Measurement & Test, 2015, 41(3): 51-54. |
[20] | 王家恒, 刘冬云. 动态反应池-电感耦合等离子体质谱法同时测定地质样品中的金和银[J]. 分析试验室, 2017, 36(7): 819-822. Wang J H, Liu D Y. Determination of Au and Ag in geological samples by dynamic reaction cell-inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2017, 36(7): 819-822. |
[21] | Guo W, Hu S H, Zhang J Y, et al. Elimination of oxide interferences and determination of ultra-trace silver in soils by ICP-MS with ion-molecule reactions[J]. Science of the Total Environment, 2011, 409(15): 2981-2986. |
[22] | Chang C C, Liu H T, Jiang S J. Bandpass reaction cell inductively coupled plasma mass spectrometry for the determination of silver and cadmium in samples in the presence of excess Zr, Nb and Mo[J]. Analytica Chimica Acta, 2003, 493(2): 213-218. |
[23] | 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402. Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402. |
[24] | 黄智敏, 吴伟明, 杨雪, 等. 电感耦合等离子体串联质谱法直接测定高纯铽中稀土杂质[J]. 分析试验室, 2021, 40(11): 1345-1350. Huang Z M, Wu W M, Yang X, et al. Direct determination of rare earth impurities in highly pure terbium by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2021, 40(11): 1345-1350. |
[25] | 李爱阳, 伍素云, 刘宁, 等. ICP-MS/MS法测定壳聚糖中的重金属元素[J]. 分析试验室, 2020, 39(5): 516-520. Li A Y, Wu S Y, Liu N, et al. Determination of heavy metal elements in chitosan by inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analysis Laboratory, 2020, 39(5): 516-520. |
[26] | 赵志飞, 任小荣, 李策, 等. 氧气反应模式-电感耦合等离子体串联质谱法测定土壤中的镉[J]. 岩矿测试, 2021, 40(1): 95-102. Zhao Z F, Ren X R, Li C, et al. Determination of cadmium in soil samples by ICP-MS/MS using oxygen reaction mode[J]. Rock and Mineral Analysis, 2021, 40(1): 95-102. |
[27] | 奚小环, 侯青叶, 杨忠芳, 等. 基于大数据的中国土壤背景值与基准值及其变化特征研究——写在《中国土壤地球化学参数》出版之际[J]. 物探与化探, 2021, 45(5): 1095-1108. Xi X H, Hou Q Y, Yang Z F, et al. Big data based studies of the variation features of Chinese soil's background value versus reference value: A paper written on the occasion of < Soil Geochemical Parameters> of China's publication[J]. Geophysical and Geochemical Exploration, 2021, 45(5): 1095-1108. |
[28] | 迟清华, 鄢明才. 应用地球化学元素丰度数据手册[M]. 北京: 地质出版社, 2007: 140-142. Chi Q H, Yan M C. Handbook of elemental abundance for applied geochemistry[M]. Beijing: Geological Publishing House, 2007: 140-142. |
[29] | 王振伟, 王维宇, 郭朝, 等. 电感耦合等离子体串联质谱氨气模式测定土壤中的银[J]. 环境化学, 2021, 40(4): 1285-1287. Wang Z Y, Wang W Y, Guo Z, et al. Determination of silver in soil by ICP tandem mass spectrometry ammonia mode[J]. Environmental Chemistry, 2021, 40(4): 1285-1287. |
[30] | Zhu Y B, Ariga T, Nakano K, et al. Trends and advances in inductively coupled plasma tandem quadruple mass spectrometry (ICP-QMS/QMS) with reaction cell[J]. Atomic Spectroscopy, 2021, 42(6): 304-305. |
[31] | Eduardo B F, Ana R I, Martin R, et al. To shift, or not to shift: Adequate selection of an internal standard in mass-shift approaches using tandem ICP-mass spectrometry (ICP-MS/MS)[J]. Journal of Analytical Atomic Spectrometry, 2021, 36(6): 1135-1149. |
[32] | Zhang J Y, Dong Y H, Xu Z F. Determination of silver in geological samples by dynamic reaction cell inductively coupled plasma mass spectrometry after extraction from boiling aqua regia[J]. Atomic Spectroscopy, 2017, 38(2): 37-41. |
[33] | Zhang J Y, Dong Y H, Xu Z F. A simple method for the simultaneous determination of trace cadmium and silver in soil samples by dynamic reaction cell inductively coupled plasma mass spectrometry[J]. Atomic Spectroscopy, 2016, 37(4): 131-135. |
[34] | Naoki S, Yasuyuki S. Removal of spectral interferences on noble metal elements using MS/MS reaction cell mode of a triple quadrupole ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2015, 30(12): 2481-2487. |
Main product ions and signal intensives of 1μg/L Ag solution(a), 1mg/L Nb solution(b) and 10mg/L Zr solution(c) in different modes
Effects of cell gas flow rate on signal intensities of matrix blank solutions, matrix spiked solutions and BEC by (a) helium MS/MS mode, (b) oxygen MS/MS mode, (c) ammonia MS/MS mode, and (d) ammonia Mass-Shift mode