Citation: | CAI Zhuang, HOU Guohua, GAO Maosheng. Construction of Background Values of Arsenic and Mercury and Their Pollution Assessment in Key Intertidal Sediment Cores of China[J]. Rock and Mineral Analysis, 2022, 41(5): 857-866. doi: 10.15898/j.cnki.11-2131/td.202202220028 |
The contamination of arsenic and mercury in intertidal sediments will lead to excessive levels of arsenic and mercury in the flora and fauna of the region, which will seriously affect the ecological environment of local vegetation and further affect the survival and safety of human beings. Therefore, it is of great practical significance to study the changes in the contents and spatial distribution of arsenic and mercury in intertidal sediments.
To investigate the contents of arsenic and mercury in sediments, so as to provide basic information on the pollution of arsenic and mercury in intertidal sediments.
The contents of arsenic and mercury in the sediments of the study area were determined by atomic fluorescence spectrometry (AFS), and iron was selected as the normalized element to establish the environmental background values of arsenic and mercury elements in different intertidal sediments. The geoaccumulation index method and potential ecological hazard index method were used to evaluate the pollution status of arsenic and mercury in the study area.
Background value of arsenic content: Minjiang Estuary (2.90mg/kg) < Daliao Estuary (6.42mg/kg) < Yancheng Shoal in northern Jiangsu (11.02mg/kg) < Pearl River Estuary (19.19mg/kg). Background value of mercury content: maximum in Pearl River Estuary (0.08mg/kg), less in Daliao Estuary, Yancheng shoal and Minjiang Estuary (0.02mg/kg, 0.02mg/kg, 0.03mg/kg, respectively). The maximum values of background values of arsenic and mercury were both found in the Pearl River Estuary, and the minimum values were located in the Minjiang Estuary. The maximum values of arsenic and mercury of sediments were both found in the Pearl River Estuary, which were 42.90mg/kg and 0.287mg/kg, respectively, and were greater than the first class of Marine Sediment Quality Standard (arsenic: 20.0mg/kg; mercury: 0.2mg/kg). Arsenic belonged to no pollution and slight potential ecological hazards in the four intertidal sediments. Mercury was a medium potential ecological hazard in the Pearl River Estuary, and slight pollution or no pollution in the other three intertidal sediments.
The distribution of arsenic and mercury in the sediments of the four intertidal zones in the study area is characterized by "high in the south and low in the north". The arsenic and mercury contents in the intertidal sediments of Minjiang and Pearl River estuaries are more influenced by industrial and agricultural activities, thus causing the distribution features. The pollution of arsenic and mercury in the Pearl River Estuary is more serious than other intertidal areas, so it is urgent to strengthen the control of their pollution trends.
[1] | Schrage K R, Tupik J D, Allen J D. Intertidal zonation of hemichordates in soft sediments[J]. Invertebrate Biology, 2021, 140(3): e12344. |
[2] | 黄学勇, 张戈, 高茂生, 等. 广利河口北潮滩重金属分布特征及评价[J]. 海洋地质前沿, 2018, 34(9): 43-50. doi: 10.16028/j.1009-2722.2018.09006 Huang X Y, Zhang G, Gao M S, et al. Distribution pattern and assessment of heavy metals in the sediments of north Guang-Li River Estuary[J]. Marine Geology Frontiers, 2018, 34(9): 43-50. doi: 10.16028/j.1009-2722.2018.09006 |
[3] | Luo X, Lang H, Wang W. Experimental study on the effect of salinity change on Fe and Cr removal from estuary water[J]. Atmospheric Environment, 2012, 57: 146-152. . doi: 10.1016/j.atmosenv.2012.04.056 |
[4] | Ahn I Y, Choi J W. Macrobenthic communities impacted by anthropogenic activities in an intertidal sand flat on the west coast (Yellow Sea) of Korea[J]. Marine Pollution Bulletin, 1998, 36(10): 808-817. doi: 10.1016/S0025-326X(98)00061-7 |
[5] | Kwon I, Lee C, Lee J, et al. The first national scale evaluation of total nitrogen stocks and burial rates of intertidal sediments along the entire coast of South Korea[J]. Science of the Total Environment, 2022, 793(1): 148568. |
[6] | Hwang D W, Kim P J, Kim S G, et al. Spatial distribution and pollution assessment of metals in intertidal sediments, Korea[J]. Environmental Science and Pollution Research, 2019, 26(19): 19379-19388. doi: 10.1007/s11356-019-05177-z |
[7] | Knight J. Processes of soft-sediment clast formation in the intertidal zone[J]. Sedimentary Geology, 2005, 181(3-4): 207-214. doi: 10.1016/j.sedgeo.2005.09.004 |
[8] | Vouve F, Guiraud G, Marol C, et al. NH4+ turnover in intertidal sediments of Marennes-Oleron Bay (France): Effect of sediment temperature[J]. Oceanologica Acta, 2000, 23(5): 575-584. doi: 10.1016/S0399-1784(00)01104-X |
[9] | 蔡敬怡, 谭科艳, 路国慧, 等. 贵州万山废弃矿区小流域系统沉积物及悬浮物重金属的空间分布特征[J]. 岩矿测试, 2019, 38(3): 305-315. Cai J Y, Tan K Y, Lu G H, et al. The spatial distribution characteristics of heavy metals in river sediments and suspended matter in small tributaries of the abandoned Wanshan mercury mines, Guizhou Province[J]. Rock and Mineral Analysis, 2019, 38(3): 305-315. |
[10] | 庄海海, 高茂生, 徐绍辉, 等. 大沽河口潮间带沉积物重金属污染特征[J]. 海洋环境科学, 2018, 37(6): 826-834. Zhuang H H, Gao M S, Xu S H, et al. The characteristics of heavy metal pollution in the intertidal zone of Dagu Estuary[J]. Marine Environmental Science, 2018, 37(6): 826-834. |
[11] | Wang C C, Chen R F, Yang X, et al. Asian horseshoe crab bycatch in intertidal zones of the northern Beibu Gulf: Suggestions for conservation management[J]. Journal of Ocean University of China, 2022, 21(3): 611-621. doi: 10.1007/s11802-022-5214-9 |
[12] | 钱贞兵, 孙立剑, 徐升, 等. 淮河流域安徽段土壤重金属元素分布特征研究[J]. 岩矿测试, 2018, 37(2): 193-200. Qian Z B, Sun L J, Xu S, et al. Distribution characteristics of heavy metals in soils of the Anhui section of the Huaihe River Basin[J]. Rock and Mineral Analysis, 2018, 37(2): 193-200. |
[13] | 高娟琴, 于扬, 李以科, 等. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征[J]. 岩矿测试, 2021, 40(6): 871-882. Gao J Q, Yu Y, Li Y K, et al. Distribution characteristics of rare earth elements and heavy metals in a soil-plant system at Bayan Obo rare earth mine, Inner Mongolia[J]. Rock and Mineral Analysis, 2021, 40(6): 871-882. |
[14] | 罗飞, 巴俊杰, 苏春田, 等. 武水河上游区域土壤重金属污染风险及来源分析[J]. 岩矿测试, 2019, 38(2): 195-203. Luo F, Ba J J, Su C T, et al. Contaminant assessment and sources analysis of heavy metals in soils from the upper reaches of the Wushui River[J]. Rock and Mineral Analysis, 2019, 38(2): 195-203. |
[15] | Chen Y Z, Ning Y Q, Bi X Y, et al. Pine needles as urban atmospheric pollution indicators: Heavy metal concentrations and Pb isotopic source identification[J]. Chemosphere, 2022, 296: 134043. doi: 10.1016/j.chemosphere.2022.134043 |
[16] | Deng H G, Gu T F, Li M H, et al. Comprehensive assessment model on heavy metal pollution in soil[J]. International Journal of Electrochemical Science, 2012, 7(6): 5286-5296. |
[17] | He J Y, Yang Y, Christakos G, et al. Assessment of soil heavy metal pollution using stochastic site indicators[J]. Geoderma, 2019, 337: 359-367. doi: 10.1016/j.geoderma.2018.09.038 |
[18] | Li Z Y, Ma Z W, Kuijp T J, et al. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment[J]. Science of the Total Environment, 2014, 468: 843-853. |
[19] | 张威, 苏世兵, 李宁. 辽东半岛东岸潮间带沉积物重金属含量分析及污染评价[J]. 贵州师范大学学报(自然科学版), 2022, 40(1): 6-12. Zhang W, Su S B, Li N. Heavy metal content analysis and pollution assessment of intertidal sediments in Biliu Estuary on the east coast of Liaodong Peninsula[J]. Journal of Guizhou Normal University (Natural Sciences), 2022, 40(1): 6-12. |
[20] | 李兆河. 2010年湄洲湾北岸潮间带沉积物重金属污染分布及污染评价[J]. 海洋湖沼通报, 2021, 43(6): 49-57. Li Z H. Distribution and evaluation of heavy metal pollution in surface sediments from intertidal zone on the northern shore of the Meizhou Bay in 2010[J]. Transactions of Oceanology and Limnology, 2021, 43(6): 49-57. |
[21] | 刘阳, 赵晋娥, 张凡顺. 青岛潮间带表层沉积物重金属污染现状及潜在生态风险评价[J]. 环境污染与防治, 2021, 43(4): 492-496. Liu Y, Zhao J E, Zhang F S. Pollution status and potential ecological risk assessment of heavy metals in the surface sediments of Qingdao intertidal zone[J]. Environmental Pollution & Control, 2021, 43(4): 492-496. |
[22] | 冀应斌, 陈雷. 海洋沉积物重金属元素相关性研究——以海南岛环岛潮间带为例[J]. 河南科技, 2021, 40(30): 49-51. Ji Y B, Chen L. Correlation of heavy metal elements in marine sediments—A case study of the intertidal zone Hainan Island[J]. Henan Science and Technology, 2021, 40(30): 49-51. |
[23] | 张湘君. 海洋沉积物中金属元素环境本底值的确定[J]. 东海海洋, 1988(3): 68-71. Zhang X J. Determination of environmental background value of metal element in marine sediments[J]. Journal of Marine Sciences, 1988(3): 68-71. |
[24] | 陈勇, 马德毅, 刘文全, 等. 东寨港潮间带沉积物重金属环境背景值构建研究[J]. 海洋环境科学, 2020, 39(5): 716-722. Chen Y, Ma D Y, Liu W Q, et al. The construction of heavy metal environmental background values of the intertidal sediments in Dongzhai Port[J]. Marine Environmental Science, 2020, 39(5): 716-722. |
[25] | Sanchez-Rodas D, Mellano F, Morales E, et al. A simplified method for inorganic selenium and selenoaminoacids speciation based on HPLC-TR-HG-AFS[J]. Talanta, 2013, 106: 298-304. |
[26] | 祝正辉. 原子荧光光谱法测定土壤中的砷和汞[J]. 理化检验(化学分册), 2015, 51(7): 952-954. Zhu Z H. Determination of arsenic and mercury in soil by AFS[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis), 2015, 51(7): 952-954. |
[27] | 程伟, 邱海鸥, 汤少展, 等. HPLC-HG-AFS测定环境样品中As(Ⅲ)和As(Ⅴ)[J]. 分析试验室, 2015, 34(3): 267-269. Cheng W, Qiu H O, Tang S Z, et al. Determination of As(Ⅲ) and As(Ⅴ) in environmental samples with HPLC-HG-AFS[J]. Chinese Journal of Analysis Laboratory, 2015, 34(3): 267-269. |
[28] | 杨秀琳, 张伟. 原子荧光法测水中砷的方法检出限计算方式和结果比较[J]. 甘肃科技, 2019, 35(2): 74-76. Yang X L, Zhang W. Determination of arsenic in water by atomic fluorescence spectrometry[J]. Gansu Science and Technology, 2019, 35(2): 74-76. |
[29] | Müller G. Index of geoaccumulation in sediments of the Rhine River[J]. GeoJournal, 1969, 2(3): 109-118. |
[30] | Hakanson L. An ecological risk index for aquatic pollution control. A sedimentological approach[J]. Water Research, 1980, 14(8): 975-1001. |
[31] | 赵一阳, 鄢明才. 黄河、长江、中国浅海沉积物化学元素丰度比较[J]. 科学通报, 1992(13): 1202-1204. Zhao Y Y, Yan M C. Comparison of chemical element abundances in sediments of the Yellow River, the Yangtze River and China's shallow sea[J]. Chinese Science Bulletin, 1992(13): 1202-1204. |
[32] | 赵一阳, 鄢明才. 中国浅海沉积物化学元素丰度[J]. 中国科学(B辑), 1993(10): 1084-1090. Zhao Y Y, Yan M C. Abundance of chemical elements in shallow sea sediments of China[J]. Scientia Sinica (Chimica), 1993(10): 1084-1090. |
[33] | 吴燕玉, 李彤, 谭方, 等. 辽河平原土壤背景值区域特征及分布规律[J]. 环境科学学报, 1986, 6(4): 420-433. Wu Y Y, Li T, Tan F, et al. Element background levels in soils of Liaohe Rivier Plain[J]. Acta Scientiae Circumstantiae, 1986, 6(4): 420-433. |
[34] | 陈振金, 陈春秀, 刘用清, 等. 福建省土壤环境背景值研究[J]. 环境科学, 1992, 13(4): 70-75. Chen Z J, Chen C X, Liu Y Q, et al. Study on soil environmental background value in Fujian Province[J]. Environmental Science, 1992, 13 (4): 70-75. |
[35] | 陈邦本, 胡蓉卿, 陈铭达. 江苏海涂土壤环境元素的自然背景值[J]. 南京农业大学学报, 1985, 3(3): 54-60. Chen B B, Hu R Q, Chen M D. The natural background-values of environmental elements in beach soils of Jiangsu Province[J]. Journal of Nanjing Agricultural University, 1985, 3(3): 54-60. |
[36] | 陈斌, 尹晓娜, 姜广甲. 珠江口外陆架海域表层成绩五重金属潜在生态风险评价及来源分析[J]. 应用海洋学学报, 2021, 40(3): 520-528. Chen B, Yin X N, Jiang G J. Assessment of the potential ecological risk of heavy metals in the sediments of continental shelf and their sources off the Pearl River Estuary[J]. Journal of Applied Oceanography, 2021, 40(3): 520-528. |
Spatial distribution of intertidal zone in four key estuaries of China in the study area
Vertical distribution characteristics of As and Hg contents in four intertidal sediments
Correlation between (a)As, (b)Hg content and TFe2O3 content in intertidal sediments of the Daliao Estuary
Correlation between (a) As, (b) Hg content and TFe2O3 content in intertidal sediments of the Yancheng Shoal
Correlation between (a) As, (b) Hg content and TFe2O3 content in intertidal sediments of the Minjiang Estuary
Correlation between (a) As, (b) Hg content and TFe2O3 content in intertidal sediments of the Pearl River Estuary