Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 2
Article Contents

YANG Chunmei, HUANG Ziyun, QIN Jingwen, LU Zhenping, LU Taijin, TANG Ziwei. Identification of Jadeite Filled with Inorganic Materials Using UV Fluorescence, Infrared Spectroscopy and LIBS Techniques[J]. Rock and Mineral Analysis, 2022, 41(2): 281-290. doi: 10.15898/j.cnki.11-2131/td.202109170123
Citation: YANG Chunmei, HUANG Ziyun, QIN Jingwen, LU Zhenping, LU Taijin, TANG Ziwei. Identification of Jadeite Filled with Inorganic Materials Using UV Fluorescence, Infrared Spectroscopy and LIBS Techniques[J]. Rock and Mineral Analysis, 2022, 41(2): 281-290. doi: 10.15898/j.cnki.11-2131/td.202109170123

Identification of Jadeite Filled with Inorganic Materials Using UV Fluorescence, Infrared Spectroscopy and LIBS Techniques

More Information
  • BACKGROUND

    Through visiting the jadeite market, the existence of inorganic material-filled jadeite is known, but there is a lack of identification basis due to rare references.

    OBJECTIVES

    To understand the identification characteristics of inorganic material-filled jadeite.

    METHODS

    Two types of inorganic materials, water glass and silica sol, were used to fill low-grade jadeite in the simulation experiment. Conventional gemological tests, fluorescence image observation with DiamondViewTM, Fourier transform infrared (FTIR) spectroscopy, and laser-induced breakdown spectroscopy (LIBS) were used to test the inorganic filled jadeite samples.

    RESULTS

    The transparency, color, density and structure of jadeite were improved after filling. Under the DiamondViewTM, the jadeite particles in the sample showed green fluorescence, and the filling around the cracks and between the particles displayed blue fluorescence with non-uniform distribution. Mid-infrared reflectance spectrum analysis showed that the spectra of silica sol and water-glass were slightly different from each other. The absorption peaks of the samples filled with inorganic materials at 1162cm-1, 1070cm-1, 949cm-1, 579cm-1, 529cm-1 and 470cm-1 gradually weakened, and the peak shape gradually became smooth or disappeared. In addition, the differences between the jadeite and inorganic filled jadeite can be determined by the near-infrared spectral morphology and the shape of the absorption peak changed in the range of 7062cm-1, 5204cm-1 and 4537cm-1. The laser-induced breakdown spectroscopy demonstrated that the content of the silicon in the jadeite filled with silicon sol or sodium and potassium water-glass was higher. The high potassium content was an important feature for the jadeite filled by sodium and potassium water-glass.

    CONCLUSIONS

    The samples effect of the simulation experiment needs to be improved, but the identification characteristics of the filled jadeite with inorganic materials are recognized, which has caused a further breakthrough in the enhancement and treatment of jadeite identification.

  • 加载中
  • [1] Emmanuel F, Shun-Tien T W, Thomas M, et al. Identification of bleached and polymer-impregnated jadeite[J]. Gems & Gemology, 1992, 28(3): 176-187.

    Google Scholar

    [2] Wenting L, Lei Z, Qiusheng Z. Rough jadeite with an artificial coating to imitate a weathered crust[J]. The Journal of Gemmology, 2021, 37(5): 472-473. doi: 10.15506/JoG.2021.37.5.472

    CrossRef Google Scholar

    [3] 秦宏宇, 刘瑞. 激光拉曼技术的珠宝成分检测[J]. 激光杂志, 2017, 38(7): 40-43.

    Google Scholar

    Qing H Y, Liu R. Laser Raman technique in jewelry component testing[J]. Laser Journal, 2017, 38(7): 40-43.

    Google Scholar

    [4] 于爽, 夏婧竹. 便携式差分喇曼光谱技术在翡翠鉴定中的研究[J]. 激光技术, 2021, 45(4): 511-515.

    Google Scholar

    Yu S, Xia J Z. Study on shifted-excitation Raman difference spectroscopy in the identification of jades[J]. Laser Technology, 2021, 45(4): 511-515.

    Google Scholar

    [5] 范建良, 郭守国, 刘学良, 等. 天然与处理翡翠的光谱学研究[J]. 激光与红外, 2007, 37(8): 769-772. doi: 10.3969/j.issn.1001-5078.2007.08.024

    CrossRef Google Scholar

    Fan J L, Guo S G, Liu X L, et al. Study on spectroscopy of natural and treated jadeite[J]. Laser & Infrared, 2007, 37(8): 769-772. doi: 10.3969/j.issn.1001-5078.2007.08.024

    CrossRef Google Scholar

    [6] 刘欣蔚, 陈美华, 刘媛. 高光谱成像技术在充胶处理宝石鉴定中的应用——以翡翠和绿松为例[J]. 宝石和宝石学杂志, 2019, 21(1): 1-11.

    Google Scholar

    Liu X W, Chen M H, Liu Y. Application of hyperspectral imaging technique in identification of polymer-impregnated gemstone: Taking jadeite and turquoise as example[J]. Journal of Gems and Gemmology, 2019, 21(1): 1-11.

    Google Scholar

    [7] 马平, 沈锡田, 邵天, 等. 常见翡翠的三维荧光光谱特征研究[J]. 光谱学与光谱分析, 2021, 41(3): 961-966.

    Google Scholar

    Ma P, Shen X T, Shao T, et al. Study on three-dimensional fluorescence spectrum characteristics of common jadeite jade[J]. Spectroscopy and Spectral Analysis, 2021, 41(3): 961-966.

    Google Scholar

    [8] 王亦帆, 邢莹莹, 赵军博, 等. 丙烯酸酯类聚合物在翡翠充填改性中的应用初探[J]. 当代化工, 2020, 49(6): 1047-1050, 1055. doi: 10.3969/j.issn.1671-0460.2020.06.010

    CrossRef Google Scholar

    Wang Y F, Xing Y Y, Zhao J B, et al. Preliminary study on the application of acrylic polymer in jade filling modification[J]. Contemporary Chemical Industry, 2020, 49(6): 1047-1050, 1055. doi: 10.3969/j.issn.1671-0460.2020.06.010

    CrossRef Google Scholar

    [9] 亓利剑, 袁心强, 彭国桢, 等. 翡翠中蜡质物和高分子聚合物充填处理尺度的判别[J]. 宝石和宝石学杂志, 2005, 7(3): 1-6. doi: 10.3969/j.issn.1008-214X.2005.03.001

    CrossRef Google Scholar

    Qi L J, Yuan X Q, Peng G Z, et al. Scale determination of wax and macro molecule polymer filled jadeite jade[J]. Journal of Gems and Gemmology, 2005, 7(3): 1-6. doi: 10.3969/j.issn.1008-214X.2005.03.001

    CrossRef Google Scholar

    [10] 吴瑞华, 王鸿雁, 张晓辉. 缅甸翡翠研究最新成果[M]. 武汉: 中国地质大学出版社, 2003: 5.

    Google Scholar

    Wu R H, Wang H Y, Zhang X H. The latest achievements of jade research in Myanmar[M]. Wuhan: China University of Geosciences Press, 2003: 5.

    Google Scholar

    [11] 王以群, 郭守国, 王学良. 最新翡翠充填改善工艺技术原理与特征[J]. 中国宝石, 2004, 13(4): 80-81.

    Google Scholar

    Wang Y Q, Guo S G, Wang X L. Principle and characteristics of the latest improvement technology of jadeite filling[J]. China Gems, 2004, 13(4): 80-81.

    Google Scholar

    [12] 郭守国, 王以群. 宝玉石学[M]. 上海: 学林出版社, 2005: 161.

    Google Scholar

    Guo S G, Wang Y Q. Gemmology[M]. Shanghai: Academia Press, 2005: 161.

    Google Scholar

    [13] 吕璐. 翡翠无机材料充填实验探索[D]. 武汉: 中国地质大学(武汉), 2009.

    Google Scholar

    Lyu L. Exploration filling experiment of jadeite with inorganic material[D]. Wuhan: China University of Geosciences (Wuhan), 2009.

    Google Scholar

    [14] 胡嗣卓, 付雪松, 黄鹏, 等. 硅酸盐黏结剂制备摩擦材料的性能研究[J]. 无机盐工业, 2019, 51(12): 39-43. doi: 10.11962/1006-4990.2019-0055

    CrossRef Google Scholar

    Hu S Z, Fu X S, Huang P, et al. Study on performance of friction material combined by silicate inorganic binder[J]. Inorganic Chemicals Industry, 2019, 51(12): 39-43. doi: 10.11962/1006-4990.2019-0055

    CrossRef Google Scholar

    [15] 宋来, 张宏奎, 王成刚, 等. 复合硬化改性水玻璃粘结剂的研究[J]. 铸造, 2018, 67(10): 871-874. doi: 10.3969/j.issn.1001-4977.2018.10.002

    CrossRef Google Scholar

    Song L, Zhang H K, Wang C G, et al. Research on modified and compound hardened water glass binder[J]. Foundry, 2018, 67(10): 871-874. doi: 10.3969/j.issn.1001-4977.2018.10.002

    CrossRef Google Scholar

    [16] 杨宏波, 刘朝辉, 班国东, 等. 无机硅酸盐涂料耐水性提高途径分析[J]. 涂料工业, 2017, 47(8): 9-14.

    Google Scholar

    Yang H B, Liu C H, Ban G D, et al. Analysis on improvement of water resistance of inorganic silicate coatings[J]. Paint & Coatings Industry, 2017, 47(8): 9-14.

    Google Scholar

    [17] 忻方海, 刘伟华, 宋来, 等. 一种铸造用抗吸湿型无机粘结剂的研究[J]. 现代铸铁, 2020, 40(6): 53-55, 64. doi: 10.3969/j.issn.1003-8345.2020.06.014

    CrossRef Google Scholar

    Xin F H, Liu W H, Song L, et al. Study on an foundry-used anti-moisture absorption inorganic binder[J]. Modern Cast Iron, 2020, 40(6): 53-55, 64. doi: 10.3969/j.issn.1003-8345.2020.06.014

    CrossRef Google Scholar

    [18] 段晓娜, 孙羊羊, 张海红, 等. 硅溶胶的研究进展及应用[J]. 硅酸盐通报, 2014, 33(4): 836-840.

    Google Scholar

    Duan X N, Sun Y Y, Zhang H H, et al. Research progress and application of silica sol[J]. Bulletin of the Chinese Ceramic Society, 2014, 33(4): 836-840.

    Google Scholar

    [19] 杨丽静, 田辉平, 龙军, 等. 碱性硅溶胶稳定性的研究[J]. 石油炼制与化工, 2010, 41(6): 12-16. doi: 10.3969/j.issn.1005-2399.2010.06.003

    CrossRef Google Scholar

    Yang L J, Tian H P, Long J, et al. Study on the stability or alkaline silica sol[J]. Petroleum Processing and Petrochemicals, 2010, 41(6): 12-16. doi: 10.3969/j.issn.1005-2399.2010.06.003

    CrossRef Google Scholar

    [20] 王峰, 陈平安, 朱伯铨, 等. 硅溶胶对铝酸盐水泥结合刚玉质浇注料微观结构和性能的影响[J]. 硅酸盐学报, 2018, 46(3): 427-433.

    Google Scholar

    Wang F, Chen P A, Zhu B Q, et al. Effect of silica sol on microstructure and properties of corundum castables bonded with aluminate cement[J]. Journal of the Chinese Ceramic Society, 2018, 46(3): 427-433.

    Google Scholar

    [21] Norazmi F S, Chaudhary K T, Mazalan E, et al. Effect of various amount of ammonium hydroxide on morphology of silica nanoparticles grown by sol-gel[J]. Malaysian Journal of Fundamental and Applied Sciences, 2018, 14: 482-484. doi: 10.11113/mjfas.v14n0.1278

    CrossRef Google Scholar

    [22] Owoeye S S, Abegunde S M, Babatunde O. Effects of process variable on synthesis and characterization of amorphous silica nanoparticles using sodium silicate solutions as precursor by sol-gel method[J]. Nano-Structures & Nano-Objects, 2021, 25: 1-8.

    Google Scholar

    [23] 陈玉娴, 张定军, 白雪, 等. 溶胶-凝胶法制备纳米二氧化硅微球的研究[J]. 应用化工, 2018, 47(6): 1123-1126. doi: 10.3969/j.issn.1671-3206.2018.06.012

    CrossRef Google Scholar

    Chen Y X, Zhang D J, Bai X, et al. Preparation of nanometer silica spheres by sol-gel method[J]. Applied Chemical Industry, 2018, 47(6): 1123-1126. doi: 10.3969/j.issn.1671-3206.2018.06.012

    CrossRef Google Scholar

    [24] 解志益, 周涵, 李庆超, 等. 纳米硅溶胶的制备及在水泥基材料中的应用研究进展[J]. 材料导报, 2020, 34(S2): 1160-1163.

    Google Scholar

    Xie Z Y, Zhou H, Li Q C, et al. Preparation, application of colloidal nano-silica and its research progress in cement-based materials[J]. Materials Reports, 2020, 34(S2): 1160-1163.

    Google Scholar

    [25] 刘浩, 王周福, 王玺堂, 等. Al2O3-硅溶胶体系胶凝特征及流变行为研究[J]. 人工晶体学报, 2015, 44(11): 3319-3323. doi: 10.3969/j.issn.1000-985X.2015.11.073

    CrossRef Google Scholar

    Liu H, Wang Z F, Wang X T, et al. Gelation process and rheological properties of silica sol with alumina micropowder[J]. Journal of Synthetic Crystals, 2015, 44(11): 3319-3323. doi: 10.3969/j.issn.1000-985X.2015.11.073

    CrossRef Google Scholar

    [26] 周楠, 戴雷, 史述宾, 等. 改性硅溶胶的研究现状及进展[J]. 中国胶粘剂, 2016, 25(11): 54-59.

    Google Scholar

    Zhou N, Dai L, Shi S B, et al. Research status and progress of modified ludox[J]. China Adhesives, 2016, 25(11): 54-59.

    Google Scholar

    [27] 张蓓莉, 系统宝石学[M]. 北京: 地质大学出版社, 2006: 52-53, 62.

    Google Scholar

    Zhang B L. Systematic gemmology[M]. Beijing: Geological Publishing House, 2006: 52-53, 62.

    Google Scholar

    [28] 杨池玉, 陆太进, 张健, 等. 河南产宝石级高温高压合成钻石的谱学特征及电磁性研究[J]. 岩矿测试, 2021, 40(2): 217-226.

    Google Scholar

    Yang C Y, Lu T J, Zhang J, et al. Spectral characteristics and electrical & magnetic properties of gem-quality high pressure high temperature grown synthetic diamonds[J]. Rock and Mineral Analysis, 2021, 40(2): 217-226.

    Google Scholar

    [29] 涂彩, 汤红云, 陆晓颖. DiamondViewTM在宝石检测中的应用[J]. 上海计量测试, 2014, 41(3): 16-17, 20. doi: 10.3969/j.issn.1673-2235.2014.03.004

    CrossRef Google Scholar

    Tu C, Tang H Y, Lu X Y. On the application of DiamondViewTM in gem identification[J]. Shanghai Measurement and Testing, 2014, 41(3): 16-17, 20. doi: 10.3969/j.issn.1673-2235.2014.03.004

    CrossRef Google Scholar

    [30] Lai T A. Application of the DiamondView in separating impregnated jadeite[J]. Gems & Gemology, 2016: 327-328.

    Google Scholar

    [31] 陈和生, 孙振亚, 邵景昌. 八种不同来源二氧化硅的红外光谱特征研究[J]. 硅酸盐通报, 2011, 30(4): 934-937.

    Google Scholar

    Chen H S, Sun Z Y, Shao J C. Investigation on FT-IR spectroscopy for eight different sources of SiO2[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(4): 934-937.

    Google Scholar

    [32] 姜广明, 马海旭, 梁杨, 等. 硅溶胶及含硅溶胶无机建筑涂料的性能分析[J]. 工程质量, 2019, 37(4): 68-70, 74. doi: 10.3969/j.issn.1671-3702.2019.04.017

    CrossRef Google Scholar

    Jiang G M, Ma H X, Liang Y, et al. Performance analysis of silica sol and containing silica solinorganic building coating[J]. Construction Quality, 2019, 37(4): 68-70, 74. doi: 10.3969/j.issn.1671-3702.2019.04.017

    CrossRef Google Scholar

    [33] 许进. 改性水玻璃的红外光谱分析[J]. 铸造, 2008(8): 834-837.

    Google Scholar

    Xu J. Infrared spectroscopy analysis of modified sodium silicate[J]. Foundry, 2008(8): 834-837.

    Google Scholar

    [34] 李晓静, 虞澜, 祖恩东. 近红外光谱分析技术在宝石研究中的应用[J]. 光谱学与光谱分析, 2018, 38(1): 54-57.

    Google Scholar

    Li X J, Yu L, Zu E D. Application of near infrared spectroscopy in the study of gems[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 54-57.

    Google Scholar

    [35] 陆婉珍. 现代近红外光谱分析技术[M]. 北京: 中国石化出版社, 2007: 29-31.

    Google Scholar

    Lu W Z. Modern near-infrared spectroscopic analysis techniques[M]. Beijing: China Petrochemical Press, 2007: 29-31.

    Google Scholar

    [36] 胡爱萍, 孙静昱, 韩晓岚, 等. 采用便携式近红外矿物分析仪鉴别注胶翡翠[J]. 宝石和宝石学杂志, 2009, 11(1): 35-38. doi: 10.3969/j.issn.1008-214X.2009.01.008

    CrossRef Google Scholar

    Hu A P, Sun J Y, Han X L, et al. Identification of injection-plastic jadeite jade by portable near-infrared mineral analyser[J]. Journal of Gems and Gemmology, 2009, 11(1): 35-38. doi: 10.3969/j.issn.1008-214X.2009.01.008

    CrossRef Google Scholar

    [37] 严衍禄, 赵龙莲, 韩东海, 等. 近红外光谱分析基础与应用[M]. 北京: 中国轻工业出版社, 2005: 499-502.

    Google Scholar

    Yan Y L, Zhao L L, Han D H, et al. Fundamentals and applications of near infrared spectroscopy[M]. Beijing: China Light Industry Press, 2005: 499-502.

    Google Scholar

    [38] 孙海涛, 吕淑红. BJKF-1型便携式近红外矿物分析仪在宝玉石鉴定中的应用[J]. 岩矿测试, 2008, 27(6): 418-422. doi: 10.3969/j.issn.0254-5357.2008.06.005

    CrossRef Google Scholar

    Sun H T, Lyu S H. Application of BJKF-1 portable near-infrared mineral analyzer in identification of gemstones and jades[J]. Rock and Mineral Analysis, 2008, 27(6): 418-422. doi: 10.3969/j.issn.0254-5357.2008.06.005

    CrossRef Google Scholar

    [39] 张蕊, 孙兰香, 陈彤, 等. 基于激光诱导击穿光谱技术的岩石表面指纹图谱分析及分类方法[J]. 地质学报, 2020, 94(3): 991-998. doi: 10.3969/j.issn.0001-5717.2020.03.023

    CrossRef Google Scholar

    Zhang R, Sun L X, Chen T, et al. Fingerprint analysis and classification of rock surface based on laser-induced breakdown spectroscopy[J]. Acta Geologica Sinica, 2020, 94(3): 991-998. doi: 10.3969/j.issn.0001-5717.2020.03.023

    CrossRef Google Scholar

    [40] Body D, Chadwick B L. Optimization of the spectral data processing in a LIBS simultaneous elemental analysis system[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2001, 56(6): 725-736. doi: 10.1016/S0584-8547(01)00186-0

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(2496) PDF downloads(76) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint