Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 2
Article Contents

CHEN Aiqing, ZHANG Lixue, LI Qiang, ZHU Jianxi, LI Shangying, HE Hongping. Accuracy and Error Sources of the Rietveld Full Pattern Fitting Method in Quantitative Analysis of Illite Ores[J]. Rock and Mineral Analysis, 2022, 41(2): 291-299. doi: 10.15898/j.cnki.11-2131/td.202103310046
Citation: CHEN Aiqing, ZHANG Lixue, LI Qiang, ZHU Jianxi, LI Shangying, HE Hongping. Accuracy and Error Sources of the Rietveld Full Pattern Fitting Method in Quantitative Analysis of Illite Ores[J]. Rock and Mineral Analysis, 2022, 41(2): 291-299. doi: 10.15898/j.cnki.11-2131/td.202103310046

Accuracy and Error Sources of the Rietveld Full Pattern Fitting Method in Quantitative Analysis of Illite Ores

More Information
  • BACKGROUND

    Illite is an important mineral resource. It is of great theoretical and practical significance to accurately obtain the mineral composition and content of illite ores. The Rietveld full pattern fitting method uses the whole diffraction pattern for analysis and shows high accuracy. However, due to the lack of pure illite samples, the accuracy and error sources of this method for analyzing the content of illite ores are not clearly known at present.

    OBJECTIVES

    To understand the accuracy and error sources of the Rietveld full pattern fitting method in quantitative analysis of illite ores.

    METHODS

    The Rietveld full pattern fitting method was used to quantitatively analyze artificial and natural illite ore samples. The results of X-ray fluorescence spectrometry (XRF) of natural illite ores were compared with the chemical compositions calculated from the mineral contents by the Rietveld method.

    RESULTS

    The results showed that the maximum absolute error ranges of illite-quartz binary mixtures, illite-quartz-albite ternary mixtures, and illite-quartz-albite-calcite-kaolinite multiple mixtures were -0.9%-0.9%, -1.9%-1.6%, and -2.3%-1.6%, respectively. The chemical compositions of natural illite ores calculated by Rietveld method were in good agreement with the results of XRF. This indicated that the Rietveld method had high accuracy in the quantitative analysis of mineral contents of natural illite ore samples. The error sources were mainly affected by the illite structural model, atomic thermal displacement parameters Uiso, and preferred orientation.

    CONCLUSIONS

    A reasonable structural model of illite should be chosen according to the actual samples. The values of atomic thermal vibration Uiso should be reasonably set according to the references. Preferred orientation should be decreased as much as possible during the sample preparation.

  • 加载中
  • [1] 董发勤. 应用矿物学[M]. 北京: 高等教育出版社, 2015: 494-497.

    Google Scholar

    Dong F Q. Applied mineralogy[M]. Beijing: Higher Education Press, 2015: 494-497.

    Google Scholar

    [2] 历新宇. 天然矿物伊利石为原料提钾研究[D]. 延吉: 延边大学, 2019.

    Google Scholar

    Li X Y. Study on extraction of patassium from natural mineral illite[D]. Yanji: Yanbian University, 2019.

    Google Scholar

    [3] Alain M, Velde B. Illite[M]. Heidelberg: Springer, 2005: 189-240.

    Google Scholar

    [4] 马礼敦. X射线晶体学的百年辉煌[J]. 物理学进展, 2014, 34(2): 47-117.

    Google Scholar

    Ma L D. Splendid century of X-ray crystallography[J]. Progress in Physics, 2014, 34(2): 47-117.

    Google Scholar

    [5] Zhou X, Liu D, Bu H, et al. XRD-based quantitative analysis of clay minerals using reference intensity ratios, mineral intensity factors, Rietveld, and full pattern summation methods: A critical review[J]. Solid Earth Sciences, 2018, 3: 16-29. doi: 10.1016/j.sesci.2017.12.002

    CrossRef Google Scholar

    [6] Runcevski T, Brown C M. The Rietveld refinement method: Half of a century anniversary[J]. Crystal Growth and Design, 2021, 21(9): 4821-4822. doi: 10.1021/acs.cgd.1c00854

    CrossRef Google Scholar

    [7] Kristian U, Mark D R. Application of the Rietveld method in the Reynolds cup contest[J]. Clays and Clay Minerals, 2017, 65(4): 286-297. doi: 10.1346/CCMN.2017.064063

    CrossRef Google Scholar

    [8] Bish D L, Howard S A. Quantitative phase analysis using the Rietveld method[J]. Journal of Applied Crystallography, 1988, 21: 86-91. doi: 10.1107/S0021889887009415

    CrossRef Google Scholar

    [9] Munson E O, Chalmers G R L, Bustin R M, et al. Utilizing smear mounts for X-ray diffraction as a fully quantitative approach in rapidly characterizing the mineralogy of shale gas reservoirs[J]. Journal of Unconventional Oil and Gas Resources, 2016, 14: 22-31. doi: 10.1016/j.juogr.2016.01.001

    CrossRef Google Scholar

    [10] Zhao W, Tan W F. Quantitative and structural analysis of minerals in soil clay fractions developed under different climate zones in China by XRD with Rietveld method, and its implications for pedogenesis[J]. Applied Clay Science, 2018, 162: 351-361. doi: 10.1016/j.clay.2018.05.019

    CrossRef Google Scholar

    [11] Prandel L V, Saab S C, Brinatti A M, et al. Mineralogical analysis of clays in hardsetting soil horizons, by X-ray fluorescence and X-ray diffraction using Rietveld method[J]. Radiation Physics and Chemistry, 2014, 95: 65-68. doi: 10.1016/j.radphyschem.2012.12.017

    CrossRef Google Scholar

    [12] Kleeberg R, Monecke T, Hillier S. Preferred orientation of mineral grains in sample mounts for quantitative XRD measurements: How random are powder samples?[J]. Clays and Clay Minerals, 2008, 56(4): 404-415. doi: 10.1346/CCMN.2008.0560402

    CrossRef Google Scholar

    [13] Gualtieri A F. Accuracy of XRPD QPA using the combined Rietveld—RIR method[J]. Journal of Applied Crystallography, 2000, 33(2): 267-278. doi: 10.1107/S002188989901643X

    CrossRef Google Scholar

    [14] 陈爱清, 谭伟, 杨宜坪, 等. X射线衍射旋转撒样法分析氟金云母多型组成与含量[J]. 岩矿测试, 2021, 40(4): 504-511.

    Google Scholar

    Chen A Q, Tan W, Yang Y P, et al. Qualitative and quantitative analysis of fluorophlogopite polytype by the rotation-spray method of X-ray diffraction[J]. Rock and Mineral Analysis, 2021, 40(4): 504-511.

    Google Scholar

    [15] Toby B H. EXPGUI, a graphical user interface for GSAS[J]. Journal of Applied Crystallography, 2001, 34: 210-213. doi: 10.1107/S0021889801002242

    CrossRef Google Scholar

    [16] Bish D L, Post J E. Quantitative mineralogical analysis using the Rietveld full-pattern fitting method[J]. American Mineralogist, 1993, 78: 932-940.

    Google Scholar

    [17] Calvert C S, Palkowsky D A, Pevear D R. A combined X-ray powder diffraction and chemical method for the quantitative mineral analysis of geologic samples[M]. Colorado: Clay Minerals Society, 1989: 154-166.

    Google Scholar

    [18] Moore D M, Reynolds R C. X-ray diffraction and the identification and analysis of clay minerals[M]. Oxford: Oxford University Press, 1997: 298-299.

    Google Scholar

    [19] Hillier S. Accurate quantitative analysis of clay and other minerals in sandstones by XRD: Comparison of a Rietveld and a reference intensity ratio (RIR) method and the importance of sample preparation[J]. Clay Minerals, 2000, 35: 291-302. doi: 10.1180/000985500546666

    CrossRef Google Scholar

    [20] 付伟, 彭召, 罗鹏, 等. XRD-Rietveld全谱拟合法应用于土壤样品物相定量的准确性检验: 模拟实验与方法对比[J]. 光谱学与光谱分析, 2020, 40(3): 950-955.

    Google Scholar

    Fu W, Peng Z, Luo P, et al. Accuracy testing of soil mieral quantification by XRD-Rietveld full-spectrum fitting method: Simulation experiments and comparison with traditional method[J]. Spectroscopy and Spectral Analysis, 2020, 40(3): 950-955.

    Google Scholar

    [21] 郑振环, 李强. X射线多晶衍射数据Rietveld精修及GSAS软件入门[M]. 北京: 中国建材工业出版社, 2016: 20-23.

    Google Scholar

    Zheng Z H, Li Q. Introduction to Rietveld refinement with X-ray powder diffraction data and GSAS software[M]. Beijing: China Building Material Industry Publishing House, 2016: 20-23.

    Google Scholar

    [22] 陈爱清. 熔体中氟金云母生长机制与多型成因[D]. 北京: 中国科学院大学, 2019.

    Google Scholar

    Chen A Q. Growtth mechanism and polytype genesis of synthetic fluorophlogopite from melt[D]. Beijing: University of Chinese Academy of Sciences, 2019.

    Google Scholar

    [23] 马礼敦. X射线粉末衍射仪用试样的制作[J]. 上海计量测试, 2008(5): 2-6. doi: 10.3969/j.issn.1673-2235.2008.05.001

    CrossRef Google Scholar

    Ma L D. Preparation of the samples for X-ray powder diffractometers[J]. Shanghai Measurement and Testing, 2008(5): 2-6. doi: 10.3969/j.issn.1673-2235.2008.05.001

    CrossRef Google Scholar

    [24] 陈昊鸿, 雷芳. 粉末衍射理论和实践[M]. 北京: 北京教育出版社, 2016: 159-160.

    Google Scholar

    Chen H H, Lei F. Powder diffraction theory and practice[M]. Beijing: Higher Education Press, 2016: 159-160.

    Google Scholar

    [25] Jozanikohan G, Sahabi F, Norouzi G H, et al. Quantitative analysis of the clay minerals in the Shurijeh Reservoir Formation using combined X-ray analytical techniques[J]. Russian Geology and Geophysics, 2016, 57(7): 1048-1063. doi: 10.1016/j.rgg.2016.06.005

    CrossRef Google Scholar

    [26] Zviagina B B, Drits V A, Srodon J, et al. The illite-aluminoceladonite series: Distinguishing features and identification criteria from X-ray diffraction and infrared spectroscopy data[J]. Clays and Clay Minerals, 2015, 63(5): 378-394. doi: 10.1346/CCMN.2015.0630504

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(6)

Article Metrics

Article views(2600) PDF downloads(86) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint