Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 2
Article Contents

WANG Ganzhen, PENG Jun, LI Li, QIN Yi, CAO Jian, TIAN Zongping. Preparation of Standard Material for Composition Analysis of Manganese Ore[J]. Rock and Mineral Analysis, 2022, 41(2): 314-323. doi: 10.15898/j.cnki.11-2131/td.202104080051
Citation: WANG Ganzhen, PENG Jun, LI Li, QIN Yi, CAO Jian, TIAN Zongping. Preparation of Standard Material for Composition Analysis of Manganese Ore[J]. Rock and Mineral Analysis, 2022, 41(2): 314-323. doi: 10.15898/j.cnki.11-2131/td.202104080051

Preparation of Standard Material for Composition Analysis of Manganese Ore

More Information
  • BACKGROUND

    The toxic and hazardous elements in manganese ore not only affect manganese purification, production environment and product quality, but have also always been a technical problem in the manganese industry and particularly in experimental testing. At present, there are a total of 10 existing manganese ore composition analysis standard materials in the world, all of which lack the certified values of harmful components such as Cl, F, Co, Cr, Hg and As. Therefore, they do not meet the needs of manganese purification research, environmental monitoring, manganese ore import and detection method research.

    OBJECTIVES

    To prepare manganese ore composition analysis standard materials with quantitative values for Cl, F, As, Pb, Cd, Cr and Hg.

    METHODS

    Two certified chemical composition reference materials of manganese ore (GBW07139, GBW07140) were prepared by collecting samples from 3 large-scale manganese mining areas in Hunan Province and Xinjiang Autonomous Region. According to the type of deposit, all the samples passed the 97μm standard sieve and the initial uniformity inspection, and were packed into the smallest packaging unit individually or in combination.

    RESULTS

    For the uniformity test of randomly selected 2×30 bottles, the measured values of F were all less than F0.05(29, 60)=1.59, and the relative standard deviation was between 0.45% and 6.44%, indicating good uniformity of the samples. The long-term stability/short-term stability test was carried out within one year, and the linear model/average consistency data showed no significant difference, indicating good stability of samples. Ten laboratories participated in the collaborative certified value research, which included 23 components such as Mn, MnO2, SiO2, Al2O3, Fe, CaO, MgO, K2O, Na2O, TiO2, S, P, Cu, Co, Zn, Ni, Pb, Cd, Hg, Cr, As, Cl and F. In the two manganese ore composition analysis standard materials, the mass fractions of Mn were 21.63% and 41.55%, Cl were 38×10-6 and 1214×10-6, Ni were 1075×10-6 and 30.9×10-6, respectively.

    CONCLUSIONS

    This batch of manganese ore composition analysis standard materials contain certified values of Cl, F, Pb, Cd, Cr, Co, Hg and As, and is suitable for quality control of manganese-related analysis and testing.

  • 加载中
  • [1] Xiang J, Chen J P, Bagas L, et al. Southern China's manganese resource assessment: An overview of resource status, mineral system and prediction model[J]. Ore Geology Reviews, 2020, 116: 1-13.

    Google Scholar

    [2] Peterson M J, Hapugoda S. Microhardness characterisation of manganese ore minerals—Implications for downstream processing[J]. Minerals Engineering, 2020, 157: 1-17.

    Google Scholar

    [3] Singh V, Biswas A, Sahu N. Development of a smelting reduction process for low-grade ferruginous manganese ores to produce valuable synthetic manganese ore and pig iron[J]. Mining, Metallurgy & Exploration, 2020, 37(5): 1681-1692.

    Google Scholar

    [4] 张旭, 冯雅丽, 张小伟. 黄铁矿-微生物体系还原浸出低品位氧化锰矿工艺过程研究[J]. 矿冶工程, 2018, 38(5): 100-102, 106. doi: 10.3969/j.issn.0253-6099.2018.05.026

    CrossRef Google Scholar

    Zhang X, Feng Y L, Zhang X W. Reductive leaching process of low-grade manganese oxide ore by pyrite-microorganism system[J]. Mining and Metallurgical Engineering, 2018, 38(5): 100-102, 106. doi: 10.3969/j.issn.0253-6099.2018.05.026

    CrossRef Google Scholar

    [5] 丛源, 董庆吉, 肖克炎, 等. 中国锰矿资源特征及潜力预测[J]. 地学前缘, 2018, 25(3): 118-137.

    Google Scholar

    Cong Y, Dong Q J, Xiao K Y, et al. Characteristics and predicted potential of Mn resources in China[J]. Earth Science Frontiers, 2018, 25(3): 118-137.

    Google Scholar

    [6] 梅光贵, 张文山, 曾湘波, 等. 中国锰业技术[M]. 长沙: 中南大学出版社, 2011: 27-31.

    Google Scholar

    Mei G G, Zhang W S, Zeng X B, et al. Technology of China manganese industry[M]. Changsha: Central South University Publishing, 2011: 27-31.

    Google Scholar

    [7] 林顺达, 李康强, 李鑫培, 等. 软锰矿还原技术研究现状[J]. 湿法冶金, 2019, 38(6): 432-437.

    Google Scholar

    Lin S D, Li K Q, Li X P, et al. Research status on reduction technology of pyrolusite[J]. Hydrometallurgy of China, 2019, 38(6): 432-437.

    Google Scholar

    [8] 肖红艳, 徐晓晴, 王斐, 等. 新型捕收剂RA-92在低品位碳酸锰矿选矿中的应用[J]. 岩矿测试, 2016, 35(3): 284-289.

    Google Scholar

    Xiao H Y, Xu X Q, Wang F, et al. Application of novel collector dosage RA-92 in the flotation procedure of low-grade carbonate manganese ore[J]. Rock and Mineral Analysis, 2016, 35(3): 284-289.

    Google Scholar

    [9] 曹默雷, 陈建平. 由层序地层学角度分析大塘坡式锰矿沉积过程——以湘西北民乐锰矿为例[J]. 沉积学报, doi: 10.14027/j.issn.1000-0550.2021.020.

    Google Scholar

    Cao M L, Chen J P. The analysis of the sedimentary process for Datangpo-type manganese ores from the point of sequence stratigraphy: A case of the minle manganese deposits in northwestern Hunan[J]. Acta Sedimentologica Sinica, doi: 10.14027/j.issn.1000-0550.2021.020.

    Google Scholar

    [10] 高永宝, 滕家欣, 李文渊, 等. 新疆西昆仑奥尔托喀讷什锰矿地质、地球化学及成因[J]. 岩石学报, 2018, 34(8): 2341-2358.

    Google Scholar

    Gao Y B, Teng J X, Li W Y, et al. Geology, geochemistry and ore genesis of the Aoertuokanashi manganese deposit, western Kunlun, Xinjiang, northwest China[J]. Acta Petrologica Sinica, 2018, 34(8): 2341-2358.

    Google Scholar

    [11] 袁爱群, 郭雨桐, 李维健, 等. 杂质离子对锰电解电流效率的影响[J]. 湿法冶金, 2020, 39(4): 325-328.

    Google Scholar

    Yuan A Q, Guo Y T, Li W J, et al. Effect of impurity ions on current efficiency during manganese electrolysis[J]. Hydrometallurgy of China, 2020, 39(4): 325-328.

    Google Scholar

    [12] 贾宝亮, 孙亚峰, 王小钊, 等. 陕西镇安某高磷混合型铁锰矿选矿实验研究[J]. 矿产综合利用, 2021(1): 83-87. doi: 10.3969/j.issn.1000-6532.2021.01.013

    CrossRef Google Scholar

    Jia B L, Sun Y F, Wang X Z, et al. Experimental study on beneficiation of a high phosphorus mixed ferromanganese ore in Zhenan, Shaanxi Province[J]. Multipurpose Utilization of Mineral Resources, 2021(1): 83-87. doi: 10.3969/j.issn.1000-6532.2021.01.013

    CrossRef Google Scholar

    [13] 王杨, 伍成波, 岳林, 等. 高磷菱锰矿焙烧-氨浸实验研究[J]. 矿冶工程, 2020, 40(5): 100-103. doi: 10.3969/j.issn.0253-6099.2020.05.026

    CrossRef Google Scholar

    Wang Y, Wu C B, Yue L, et al. Experimental research on roasting and ammonia leaching of high phosphorus rhodochrosite[J]. Mining and Metallurgical Engineering, 2020, 40(5): 100-103. doi: 10.3969/j.issn.0253-6099.2020.05.026

    CrossRef Google Scholar

    [14] 吕东亚, 马保中, 陈永强, 等. 盐酸法富集低品位锰矿及酸介质高值再生工艺[J]. 工程科学学报, 2020, 42(5): 578-585.

    Google Scholar

    Lyu D Y, Ma B Z, Chen Y Q, et al. Beneficiation of low-grade manganese ore by hydrochloric acid leaching and high value regeneration of acid medium[J]. Chinese Journal of Engineering, 2020, 42(5): 578-585.

    Google Scholar

    [15] 张帆, 王芳, 解雪, 等. 锰矿中氯离子的去除工艺研究[J]. 中国资源综合利用, 2019, 37(9): 17-20. doi: 10.3969/j.issn.1008-9500.2019.09.006

    CrossRef Google Scholar

    Zhang F, Wang F, Xie X, et al. Study on dechlorination of manganese ore[J]. China Resources Comprehensive Utilization, 2019, 37(9): 17-20. doi: 10.3969/j.issn.1008-9500.2019.09.006

    CrossRef Google Scholar

    [16] 张钰钰, 朱鹏, 苏仕军, 等. 用锰冶金铁铝废渣从模拟废水中吸附铅离子试验研究[J]. 湿法冶金, 2021, 40(1): 46-51.

    Google Scholar

    Zhang Y Y, Zhu P, Su S J, et al. Adsorption of Pb2+ using iron-aluminum slag adsorbent from simulated wastewater[J]. Hydrometallurgy of China, 2021, 40(1): 46-51.

    Google Scholar

    [17] 任军, 刘方, 朱健, 等. 锰矿废渣区苔藓物种多样性及其重金属污染监测[J]. 安全与环境学报, 2020, 20(6): 2398-2407.

    Google Scholar

    Ren J, Liu F, Zhu J, et al. Diversity of the bryophytes and heavy metal pollution monitoring in manganese ore waste area[J]. Journal of Safety and Environment, 2020, 20(6): 2398-2407.

    Google Scholar

    [18] 李坦平, 吴宜, 曾利群, 等. 电感耦合等离子体串联质谱法测定电解二氧化锰废渣浸出液中的重金属元素[J]. 岩矿测试, 2020, 39(5): 682-689.

    Google Scholar

    Li T P, Wu Y, Zeng L Q, et al. Determination of heavy metal elements in leaching solution of electrolytic manganese dioxide waste residue by inductively coupled plasma-tandem mass spectrometry[J]. Rock and Mineral Analysis, 2020, 39(5): 682-689.

    Google Scholar

    [19] 姚露, 杨林, 邹敏杰, 等. 氧化锰矿浆脱除电解锰渣煅烧烟气二氧化硫工艺研究[J]. 工程科学与技术, 2020, 52(5): 250-256.

    Google Scholar

    Yao L, Yang L, Zou M J, et al. Study on flue gas desulfurization with oxide manganese slurry for electrolytic manganese calcining[J]. Advanced Engineering Sciences, 2020, 52(5): 250-256.

    Google Scholar

    [20] 李松, 邓赛文, 王毅民, 等. X射线荧光光谱在锰矿石分析中的应用文献评介[J]. 冶金分析, 2021, 41(3): 18-26.

    Google Scholar

    Li S, Deng S W, Wang Y M, et al. Review on the application of X-ray fluorescence spectrometry in analysis of manganese ore[J]. Metallurgical Analysis, 2021, 41(3): 18-26.

    Google Scholar

    [21] 孙倩芸, 李锋丽, 杨焕蝶, 等. 锰纯度定值及其单元素溶液标准物质的研制[J]. 化学分析计量, 2019, 28(5): 1-5. doi: 10.3969/j.issn.1008-6145.2019.05.001

    CrossRef Google Scholar

    Sun Q Y, Li F L, Yang H D, et al. Certification of the purity of Mn and preparation of Mn solution reference material[J]. Chemical Analysis and Meterage, 2019, 28(5): 1-5. doi: 10.3969/j.issn.1008-6145.2019.05.001

    CrossRef Google Scholar

    [22] 吴磊, 刘义博, 王家松, 等. 高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究[J]. 岩矿测试, 2018, 37(6): 637-643.

    Google Scholar

    Wu L, Liu Y B, Wang J S, et al. Sample treatment methods for determination of rare earth elements in manganese ore by high-pressure closed digestion-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2018, 37(6): 637-643.

    Google Scholar

    [23] 秦毅, 田宗平, 方俊杰, 等. 氧化锰矿石还原焙烧过程中铁还原率评价方法研究[J]. 湿法冶金, 2017, 36(5): 427-429.

    Google Scholar

    Qin Y, Tian Z P, Fang J J, et al. Evaluation of iron reduction rate during reduction roasting of manganese oxide ore[J]. Hydrometallurgy of China, 2017, 36(5): 427-429.

    Google Scholar

    [24] 王毅民, 张学华, 邓赛文, 等. X射线荧光光谱在海洋地质及矿产资源调查分析中的应用评介[J]. 冶金分析, 2020, 40(10): 63-75.

    Google Scholar

    Wang Y M, Zhang X H, Deng S W, et al. Review on the application of X-ray fluorescence spectrometry in marine geology and mineral resources survey[J]. Metallurgical Analysis, 2020, 40(10): 63-75.

    Google Scholar

    [25] 曾美云, 陈燕波, 刘金, 等. 高磷铁矿石成分分析标准物质研制[J]. 岩矿测试, 2019, 38(2): 212-221.

    Google Scholar

    Zeng M Y, Chen Y B, Liu J, et al. Preparation of high-phosphorus iron ore reference materials for chemical composition analysis[J]. Rock and Mineral Analysis, 2019, 38(2): 212-221.

    Google Scholar

    [26] 彭君, 易晓明, 王干珍, 等. 锰矿中氯的XRF测定方法确认与运用[J]. 中国锰业, 2020, 38(4): 58-62.

    Google Scholar

    Peng J, Yi X M, Wang G Z, et al. Confirmation and application of determination of chlorine in manganese ore by X-ray fluorescence spectrometry[J]. China's Manganese Industry, 2020, 38(4): 58-62.

    Google Scholar

    [27] 李津, 唐索寒, 马健雄, 等. 磁铁矿铁同位素标准物质的研制[J]. 岩石矿物学杂志, 2021, 40(3): 535-541. doi: 10.3969/j.issn.1000-6524.2021.03.007

    CrossRef Google Scholar

    Li J, Tang S H, Ma J X, et al. The preparation of reference material for Fe isotope measurement of magnetite samples[J]. Acta Petrologica et Mineralogica, 2021, 40(3): 535-541. doi: 10.3969/j.issn.1000-6524.2021.03.007

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(7)

Article Metrics

Article views(2159) PDF downloads(319) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint