Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2022 Vol. 41, No. 2
Article Contents

TAO Longfeng, JIN Cuiling, ZHANG Qianshen, HAN Xiuli. Mineralogy Characteristics and Coloration Mechanism of Green Tourmaline in Tanzania[J]. Rock and Mineral Analysis, 2022, 41(2): 324-331. doi: 10.15898/j.cnki.11-2131/td.202009280127
Citation: TAO Longfeng, JIN Cuiling, ZHANG Qianshen, HAN Xiuli. Mineralogy Characteristics and Coloration Mechanism of Green Tourmaline in Tanzania[J]. Rock and Mineral Analysis, 2022, 41(2): 324-331. doi: 10.15898/j.cnki.11-2131/td.202009280127

Mineralogy Characteristics and Coloration Mechanism of Green Tourmaline in Tanzania

More Information
  • BACKGROUND

    There are differences in the production characteristics, chemical composition, coloration mechanism and formation conditions of green tourmaline from different producing areas. At present, the mineral species and coloration mechanism of Tanzanian green tourmaline have not been solved, which makes it difficult for its scientific identification and quality rating.

    OBJECTIVES

    To study the mineralogical characteristics and coloration mechanism of Tanzanian green tourmaline.

    METHODS

    The mineral component was analyzed by infrared spectroscopy and Raman spectroscopy. Microtexture was characterized by polarized light microscopy. Electron probe microanalyzer, and ultraviolet-visible (UV-Vis) spectroscopy were applied to analyze the chemical composition.

    RESULTS

    The main mineral component of tourmaline in Tanzania was MgO tourmaline, which was characterized by single crystal, small grain, no cleavage, and split development, and can be used as a gemstone. The main chemical component of green tourmaline was SiO2, Al2O3, MgO and B2O3, with average contents of 37.52%, 36.26%, 9.65% and 8.42%, respectively. In addition, it contained a small amount of FeO, Cr2O3 and TiO2. Combined with the absorption spectrum in the ultraviolet region of 440nm, 600nm and 680nm in UV-Vis spectroscopy, it was concluded that the tiny amounts of Cr3+ replacing Al3+ into the crystal lattice was the main cause of the green color.

    CONCLUSIONS

    The mineralogical characteristics and coloration mechanism of green tourmaline in Tanzania was confirmed, which provides a theoretical basis for the scientific identification, further quality evaluation and utilization.

  • 加载中
  • [1] 王长秋, 张丽葵. 珠宝玉石学[M]. 北京: 地质出版社, 2017: 407-413.

    Google Scholar

    Wang C Q, Zhang L K. Gemmology[M]. Beijing: Geological Publishing House, 2017: 407-413.

    Google Scholar

    [2] 李胜荣. 结晶学与矿物学[M]. 北京: 地质出版社, 2018: 141-142.

    Google Scholar

    Li S R. Crystallgraphy and mineralogy[M]. Beijing: Geological Publishing House, 2018: 141-142.

    Google Scholar

    [3] 林森, 孙仕勇, 申珂璇, 等. 电气石的环境功能属性及其复合材料应用研究[J]. 材料导报, 2017, 31(13): 131-137. doi: 10.11896/j.issn.1005-023X.2017.013.017

    CrossRef Google Scholar

    Lin S, Sun S Y, Shen K X, et al. Environmental functionalities of tourmaline and applications of its functional composites[J]. Materials Reports, 2017, 31(13): 131-137. doi: 10.11896/j.issn.1005-023X.2017.013.017

    CrossRef Google Scholar

    [4] 孙健鑫, 廖建彬, 戴乐阳. 高能球磨电气石红外辐射特性[J]. 造船技术, 2017(4): 18-23. doi: 10.3969/j.issn.1000-3878.2017.04.005

    CrossRef Google Scholar

    Sun J X, Liao J B, Dai L Y. Infrared radiation characteristics of high energy ball milling tourmaline[J]. Marine Technology, 2017(4): 18-23. doi: 10.3969/j.issn.1000-3878.2017.04.005

    CrossRef Google Scholar

    [5] 陈杰, 崔弘妍, 张启忠. 电气石改性研究[J]. 广州化工, 2020, 48(11): 47-49. doi: 10.3969/j.issn.1001-9677.2020.11.015

    CrossRef Google Scholar

    Chen J, Cui H Y, Zhang Q Z. Study on modification of tourmaline[J]. Guangzhou Chemical Industry, 2020, 48(11): 47-49. doi: 10.3969/j.issn.1001-9677.2020.11.015

    CrossRef Google Scholar

    [6] Liang Y F, Tang X J, Zhu Q, et al. A review: Application of tourmaline in environmental fields[J]. Chemosphere, 2021, 281: 130780. doi: 10.1016/j.chemosphere.2021.130780

    CrossRef Google Scholar

    [7] 戴苏兰, 曲蔚, 夏玉梅, 等. 碧玺充填处理鉴定与充填程度分级研究[J]. 矿物岩石, 2017, 37(3): 6-15.

    Google Scholar

    Dai S L, Qu W, Xia Y M, et al. Research on the identification of filled tourmaline and its filling grade[J]. Journal of Mineralogy and Petrology, 2017, 37(3): 6-15.

    Google Scholar

    [8] 李长城, 李可. 内蒙古突泉县电气石矿矿体特征及成因分析[J]. 现代矿业, 2019, 35(7): 73-75, 79. doi: 10.3969/j.issn.1674-6082.2019.07.017

    CrossRef Google Scholar

    Li C C, Li K. Characteristics and genesis of tourmaline ore body in Tuquan County, Inner Mongolia[J]. Modern Mining, 2019, 35(7): 73-75, 79. doi: 10.3969/j.issn.1674-6082.2019.07.017

    CrossRef Google Scholar

    [9] 李真真, 秦克章, 裴斌, 等. 大兴安岭南段白音查干Sn-Ag-Zn-Pb矿床电气石矿物学特征及对岩浆-热液演化过程的启示[J]. 岩石学报, 2020, 36(12): 3797-3812. doi: 10.18654/1000-0569/2020.12.14

    CrossRef Google Scholar

    Li Z Z, Qin K Z, Pei B, et al. Mineralogical features of tourmaline in Baiyinchagan Sn-Ag-Pb-Zn deposit, southern great Xing'an Range, and its implications for magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2020, 36(12): 3797-3812. doi: 10.18654/1000-0569/2020.12.14

    CrossRef Google Scholar

    [10] 郭佳, 严海波, 凌明星, 等. 广西大厂地区黑云母花岗岩中电气石的化学组成及其对岩浆热液演化的指示[J]. 岩石学报, 2020, 36(1): 171-183.

    Google Scholar

    Guo J, Yan H B, Ling M X, et al. Chemical composition of tourmaline in the biotite granite, the Dachang district: Insights into magmatic-hydrothermal evolution[J]. Acta Petrologica Sinica, 2020, 36(1): 171-183.

    Google Scholar

    [11] 张文弢. 新疆阿尔泰碧玺(电气石)成矿区域地质条件综述[J]. 西部资源, 2017(2): 83-85. doi: 10.3969/j.issn.1672-562X.2017.02.036

    CrossRef Google Scholar

    Zhang W T. A summary of regional geological conditions for tourmaline mineralization in Altay, Xinjiang[J]. Western Resources, 2017(2): 83-85. doi: 10.3969/j.issn.1672-562X.2017.02.036

    CrossRef Google Scholar

    [12] Patel S, Upadhyay D, Mishra B, et al. Multiple episodes of hydrothermal alteration and uranium mineralization in the Singhbhum Shear Zone, eastern India: Constraints from chemical and boron isotope composition of tourmaline[J]. Lithos, 2021, 388-389: 106084. doi: 10.1016/j.lithos.2021.106084

    CrossRef Google Scholar

    [13] Liu T, Jiang S Y. Multiple generations of tourmaline from Yushishanxi leucogranite in South Qilian of western China record a complex formation history from B-rich melt to hydrothermal fluid[J]. American Mineralogist, 2021, 106(6): 994-1008. doi: 10.2138/am-2021-7473

    CrossRef Google Scholar

    [14] Vereshchagin O, Wunder B, Britvin S, et al. Synthesis and crystal structure of Pb-dominant tourmaline[J]. American Mineralogist, 2020, 105(10): 1589-1592.

    Google Scholar

    [15] 廖秦镜, 黄伟志, 张倩, 等. 莫桑比克棕黄色碧玺的宝石学及光谱学表征[J]. 光谱学与光谱分析, 2019, 39(12): 3844-3848.

    Google Scholar

    Liao Q J, Huang W Z, Zhang Q, et al. Gemological and spectral characterization of brownish yellow tourmaline from Mozambique[J]. Spectroscopy and Spectral Analysis, 2019, 39(12): 3844-3848.

    Google Scholar

    [16] 仲佩佩, 沈锡田. 赞比亚墨绿色电气石的颜色成因初探[J]. 宝石和宝石学杂志, 2017, 19(6): 7-14.

    Google Scholar

    Zhong P P, Shen X T. Colour origin of dark green tourmaline from Zambia[J]. Journal Gems and Gemmology, 2017, 19(6): 7-14.

    Google Scholar

    [17] Martin K, Bernd W, Iris W, et al. Raman spectroscopic quantification of tetrahedral boron in synthetic aluminum-rich tourmaline[J]. American Mineralogist, 2021, 106(6): 872-882. doi: 10.2138/am-2021-7758

    CrossRef Google Scholar

    [18] Spivak A V, Borovikova E Y, Setkova T V. Raman spec-troscopy and high pressure study of synthetic Ga, Ge-rich tourmaline[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021, 248: 1-12.

    Google Scholar

    [19] Physics R. Color change of tourmaline by heat treatment and electron beam irradiation: UV-visible, EPR, and mid-IR spectroscopic analyses[J]. Journal of Technology & Science, 2016, 68(1): 83-92.

    Google Scholar

    [20] 孙麟, 杨明星, 吴改. 近期市场出现的铬碧玺宝石学性质及谱学特征[J]. 宝石和宝石学杂志, 2015, 17(1): 31-37. doi: 10.3969/j.issn.1008-214X.2015.01.005

    CrossRef Google Scholar

    Sun L, Yang M X, Wu G. Gemmological and spectroscopic characteristics of chrome tourmaline appeared on the market recently[J]. Journal Gems and Gemmology, 2015, 17(1): 31-37. doi: 10.3969/j.issn.1008-214X.2015.01.005

    CrossRef Google Scholar

    [21] Liu Y, Shigley J E, Halvorsen A, 等. 坦桑尼亚Umba谷电气石的变色效应[J]. 宝石和宝石学杂志, 1999, 1(3): 43-48.

    Google Scholar

    Liu Y, Shigley J E, Halvorsen A, et al. Usambara effect of tourmaline from Umba Valley, Tanzania[J]. Journal Gems and Gemmology, 1999, 1(3): 43-48.

    Google Scholar

    [22] 刘俊涛, 贾秀阁, 刘灵钰. 新疆阿勒泰地区碧玺宝石学特征[J]. 现代矿业, 2019, 35(6): 68-71. doi: 10.3969/j.issn.1674-6082.2019.06.017

    CrossRef Google Scholar

    Liu J T, Jia X G, Liu L Y. Gemological characteristics of the tourmaline in Altay area, Xinjiang[J]. Modern Mining, 2019, 35(6): 68-71. doi: 10.3969/j.issn.1674-6082.2019.06.017

    CrossRef Google Scholar

    [23] 田亮光, 黄文慧, 程佑法, 等. 高折射率电气石的鉴定[J]. 宝石和宝石学杂志, 2002, 4(1): 12-15, 50. doi: 10.3969/j.issn.1008-214X.2002.01.003

    CrossRef Google Scholar

    Tian L G, Huang W H, Cheng Y F, et al. Identification of a tourmaline with high refractive index[J]. Journal Gems and Gemmology, 2002, 4(1): 12-15, 50. doi: 10.3969/j.issn.1008-214X.2002.01.003

    CrossRef Google Scholar

    [24] 黄文清, 金绪广, 左锐, 等. 天然与合成紫晶的红外和偏振拉曼光谱鉴定特征[J]. 岩矿测试, 2019, 38(4): 403-410.

    Google Scholar

    Huang W Q, Jin X G, Zuo R, et al. Identification characteristics of natural and synthetic amethyst by infrared and polarized Raman spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(4): 403-410.

    Google Scholar

    [25] 宁珮莹, 张天阳, 马泓, 等. 红外光谱-显微共焦激光拉曼光谱研究天然红宝石和蓝宝石中含水矿物包裹体特征[J]. 岩矿测试, 2019, 38(6): 640-648.

    Google Scholar

    Ning P Y, Zhang T Y, Ma H, et al. Characterization of hydrous mineral inclusions in ruby and sapphire by infrared spectroscopy and microscopic confocal laser Raman spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(6): 640-648.

    Google Scholar

    [26] Qiu K F, Yu H C, Hetherington C, et al. Tourmaline composition and boron isotope signature as a tracer of magmatic-hydrothermal processes[J]. American Mineralogist, 2021, 106(7): 1033-1044. doi: 10.2138/am-2021-7495

    CrossRef Google Scholar

    [27] Bačík P, Fridrichová J. Cation partitioning among crystallographic sites based on bond-length constraints in tourmaline-supergroup minerals[J]. American Mineralogist, 2021, 106(6): 851-861. doi: 10.2138/am-2021-7804

    CrossRef Google Scholar

    [28] Hawhorrne F C, Henry D J. Classification of the minerals of the tourmaline group[J]. European Journal of Mineralogy, 1999, 11(2): 201-215. doi: 10.1127/ejm/11/2/0201

    CrossRef Google Scholar

    [29] 杨莉, 祖恩东. 红色碧玺的色度学研究[J]. 中国锰业, 2018, 36(1): 177-179.

    Google Scholar

    Yang L, Zu E D. Colorimetry research on red tourmaline[J]. China's Manganese Industry, 2018, 36(1): 177-179.

    Google Scholar

    [30] 杨育玲, 郭颖, 谭咏婷, 等. 不同标准光源对碧玺红色的影响[J]. 矿物学报, 2016, 36(2): 220-224.

    Google Scholar

    Yang Y L, Guo Y, Tan Y T, et al. The influence of different standard illuminants on tourmaline color red[J]. Acta Mineralogica Sinica, 2016, 36(2): 220-224.

    Google Scholar

    [31] 宋彦军, 李甘雨, 张健, 等. 黄绿色明矾石玉的矿物学特征及颜色成因研究[J]. 岩矿测试, 2020, 39(5): 709-719.

    Google Scholar

    Song Y J, Li G Y, Zhang J, et al. Mineralogical characteristics and coloration mechanism of yellow-green alunite jade[J]. Rock and Mineral Analysis, 2020, 39(5): 709-719.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2273) PDF downloads(57) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint