Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 3
Article Contents

PENG Jing-jing, LUO Dai-hong, LIN Kai, LIU Cheng-hai, SHANG Ying. Study on the Construction of Journal Publication-based Re-Os Dating Database[J]. Rock and Mineral Analysis, 2021, 40(3): 425-434. doi: 10.15898/j.cnki.11-2131/td.202104020048
Citation: PENG Jing-jing, LUO Dai-hong, LIN Kai, LIU Cheng-hai, SHANG Ying. Study on the Construction of Journal Publication-based Re-Os Dating Database[J]. Rock and Mineral Analysis, 2021, 40(3): 425-434. doi: 10.15898/j.cnki.11-2131/td.202104020048

Study on the Construction of Journal Publication-based Re-Os Dating Database

More Information
  • BACKGROUND

    A geological database is an important part of earth information science, which will provide reliable data support for geological research and application. Re-Os dating technology is widely applied in the study of ore deposit, mantle evolution, and marine environment.

    OBJECTIVES

    To construct a journal publication-based Re-Os dating database to integrate related research achievements, and improve the management and application of the technology.

    METHODS

    The technical route of GIS spatial database construction was adopted, and systematically studied database construction methods from multiple dimensions such as database construction ideas, data integration methods, and data database construction.

    RESULTS

    The database used publicly published Re-Os isotope dating documents as the data source and gathered more than 100 publicly published Re-Os dating documents from the last ten years. More than 35 journals were involved. The data sources were authoritative, extensive and representative. Through the structural transformation and spatial processing of unstructured fragmented document data, the database had the characteristics of authoritative data source, structured data content, and attributed spatial location.

    CONCLUSIONS

    The Re-Os dating database has a reliable data source, which can provide data support for the geological survey and research of mineral deposits.

  • 加载中
  • [1] 奚小环. 大数据科学从信息化、模式化到智能化: 现代地球化学应用研究的新范式[J]. 地学前缘, 2021, 28(1): 308-317.

    Google Scholar

    Xi X H. Big data science from informationization to modelling to intelligentization: New paradigm of applied geochemical research[J]. Earth Science Frontiers, 2021, 28(1): 308-317

    Google Scholar

    [2] 赵鹏大. 地质大数据特点及其合理开发利用[J]. 地学前缘, 2019, 26(4): 1-5.

    Google Scholar

    Zhao P D. Characteristics and rational utilization of geological big data[J]. Earth Science Frontiers, 2019, 26(4): 1-5.

    Google Scholar

    [3] 罗建民, 张旗. 大数据开创地学研究新途径: 查明相关关系, 增强研究可行性[J]. 地学前缘, 2019, 26(4): 6-12.

    Google Scholar

    Luo J M, Zhang Q. Big data pioneers new ways of geoscience research: Identifying relevant relationships to enhance research feasibility[J]. Earth Science Frontiers, 2019, 26(4): 6-12.

    Google Scholar

    [4] 周永章, 陈烁, 张旗, 等. 大数据与数学地球科学研究进展[J]. 岩石学报, 2018, 34(2): 255-263.

    Google Scholar

    Zhou Y Z, Chen S, Zhang Q, et al. Advances and prospects of big data and mathematical geoscience[J]. Acta Petrologica Sinica, 2018, 34(2): 255-263.

    Google Scholar

    [5] 张旗, 周永章. 大数据正在引发地球科学领域一场深刻的革命[J]. 地质科学, 2017, 52(3): 637-648.

    Google Scholar

    Zhang Q, Zhou Y Z. Big data will lead to a profound revolution in the field of geological science[J]. Chinese Journal of Geology, 2017, 52(3): 637-648.

    Google Scholar

    [6] 李莹莹, 范董伟, 昌仪. 基于GIS的实物地质资料信息化管理平台的设计与实现[J]. 地矿测绘, 2020, 36(2): 16-18.

    Google Scholar

    Li Y Y, Fan D W, Chang Y. Design and implementation of information management platform of physical geological data based on GIS[J]. Surveying and Mapping of Geology and Mineral Resources, 2020, 36(2): 16-18.

    Google Scholar

    [7] 史维鑫, 高鹏鑫, 回广骥, 等. 中国典型矿床实物地质资料波谱数据库及其服务系统建设建议[J]. 中国矿业, 2020, 29(1): 176-181.

    Google Scholar

    Shi W X, Gao P X, Hui G J, et al. Suggestions on construction of spectrum database and service system of cores and samples from Chinese typical deposits[J]. China Mining Magazine, 2020, 29(1): 176-181.

    Google Scholar

    [8] 田其煌. 福州市工程地质数据库建设相关技术问题研究[J]. 福建建筑, 2019(12): 141-144.

    Google Scholar

    Tian Q H. Technique research for the engineering geology database in Fuzhou[J]. Fujian Architecture and Construction, 2019(12): 141-144.

    Google Scholar

    [9] 洪瑾, 甘成势, 刘洁. 基于机器学习的洋岛玄武岩主量元素预测稀土元素[J]. 地学前缘, 2019, 26(4): 45-54.

    Google Scholar

    Hong J, Gan C S, Liu J. Prediction of REEs in OIB by major elements based on machine learning[J]. Earth Science Frontiers, 2019, 26(4): 45-54.

    Google Scholar

    [10] 杨宏伟, 赵文津, 吴珍汉. PDS行星数学系统研究及其应用[J]. 地质学报, 2015, 89(12): 2419-2432. doi: 10.3969/j.issn.0001-5717.2015.12.016

    CrossRef Google Scholar

    Yang H W, Zhao W J, Wu Z H. Research on planetary data system and application[J]. Acta Geological Sinica, 2015, 89(12): 2419-2432. doi: 10.3969/j.issn.0001-5717.2015.12.016

    CrossRef Google Scholar

    [11] 王巧云. 国际标准物质数据库COMAR及有证标准物质[J]. 岩矿测试, 2014, 33(2): 155-167.

    Google Scholar

    Wang Q Y. The international database for certified reference materials (COMAR)[J]. Rock and Mineral Analysis, 2014, 33(2): 155-167.

    Google Scholar

    [12] Peter J K, 王晓红. 地球化学与环境样品分析标准物质和GeoReM数据库[J]. 岩矿测试, 2009, 28(4): 311-315.

    Google Scholar

    Peter J K, Wang X H. Geochemical and environmental reference materials and the GeoReM database[J]. Rock and Mineral Analysis, 2009, 28(4): 311-315.

    Google Scholar

    [13] 王勇毅, 肖克炎, 李小鹏, 等. 全国固体矿床资源区划数据库建设[J]. 矿床地质, 2005, 24(5): 553-560.

    Google Scholar

    Wang Y Y, Xiao K Y, Li X P, et al. Database construction for national mineral resources assessment of China[J]. Mineral Deposits, 2005, 24(5): 553-560.

    Google Scholar

    [14] 袁方林, 张旗, 张成立. 全球新生代苦橄岩时空分布特征及意义[J]. 地学前缘, 2019, 26(4): 13-21.

    Google Scholar

    Yuan F L, Zhang Q, Zhang C L. Characteristics of the temporal-spatial distribution of global Cenozoic picrite and their significance[J]. Earth Science Frontiers, 2019, 26(4): 13-21.

    Google Scholar

    [15] 余星. 海底岩石地球化学研究中的"大数据"——PetDB及其应用[J]. 地球科学进展, 2014, 29(2): 306-314.

    Google Scholar

    Yu X. The BigData tool for geochemical study of seabed rocks-PetDB and its application in geoscience[J]. Advances in Earth Science, 2014, 29(2): 306-314.

    Google Scholar

    [16] 王少勇. 国家地质大数据服务平台"地质云2.0"上线[J]. 资源导刊, 2018(11): 40.

    Google Scholar

    Wang S Y. National geological big data platform-GeoCloud 2.0 provide service[J]. The Chinese Newspaper of Land and Resources, 2018(11): 40.

    Google Scholar

    [17] 李超, 王登红, 屈文俊, 等. 关键金属元素分析测试技术方法应用进展[J]. 岩矿测试, 2020, 39(5): 658-669.

    Google Scholar

    Li C, Wang D H, Qu W J, et al. A review and perspective on analytical methods of critical metal elements[J]. Rock and Mineral Analysis, 2020, 39(5): 658-669.

    Google Scholar

    [18] 李重阳, 陈雪. 黄铁矿Re-Os同位素定年在金属矿床研究中的应用[J]. 地质找矿论丛, 2020, 35(2): 138-144.

    Google Scholar

    Li C Y, Chen X. Applications of age dating of the Re-Os system of pyrite to study on metal deposits[J]. Contributions to Geology and Mineral Resources Research, 2020, 35(2): 138-144.

    Google Scholar

    [19] 刘俊, 祝向平, 李文昌, 等. 藏东拉荣斑岩钨钼矿床辉钼矿Re-Os定年及地质意义[J]. 地质学报, 2019, 93(7): 1708-1719.

    Google Scholar

    Liu J, Zhu X P, Li W C, et al. Molybdenite Re-Os dating of the Larong porphyry W-Mo deposit in eastern Tibet and its geological significance[J]. Acta Geologica Sinica, 2019, 93(7): 1708-1719.

    Google Scholar

    [20] 覃曼, 周瑶琪, 刘加召, 等. 铼-锇同位素体系定年研究综述[J]. 地质找矿论丛, 2017, 32(3): 421-427.

    Google Scholar

    Qin M, Zhou Y Q, Liu J Z, et al. Review of Re-Os geochronology[J]. Contributions to Geology and Mineral Resources Research, 2017, 32(3): 421-427.

    Google Scholar

    [21] 李超, 屈文俊, 王登红, 等. Re-Os同位素在沉积地层精确定年及古环境反演中的应用进展[J]. 地球学报, 2014, 35(4): 405-414.

    Google Scholar

    Li C, Qu W J, Wang D H, et al. The progress of applying Re-Os isotope to dating of organic-rich sedimentary rocks and reconstruction of palaeo environment[J]. Acta Geoscientica Sinica, 2014, 35(4): 405-414.

    Google Scholar

    [22] 杜安道, 屈文俊, 李超, 等. 铼-锇同位素定年方法及分析测试技术的进展[J]. 岩矿测试, 2009, 28(3): 288-304.

    Google Scholar

    Du A D, Qu W J, Li C, et al. A review on the development of Re-Os isotopic dating methods and techniques[J]. Rock and Mineral Analysis, 2009, 28(3): 288-304.

    Google Scholar

    [23] 钟美华. 基于非结构化数据管理平台研究与建设[J]. 中国新通信, 2020, 22(23): 57-58.

    Google Scholar

    Zhong M H. Study and construction of un-structural data management platform[J]. China New Telecommunications, 2020, 22(23): 57-58.

    Google Scholar

    [24] 陶玥, 余丽, 张润杰. 科技文献中短语级主题抽取的主动学习方法研究[J]. 数据分析与知识发现, 2020, 4(10): 134-143.

    Google Scholar

    Tao Y, Yu L, Zhang R J. Active learning strategies for extracting phrase-level topics from scientific literature[J]. Data Analysis and Knowledge Discovery, 2020, 4(10): 134-143.

    Google Scholar

    [25] 夏天, 吴文嘉, 吴文斌, 等. 地理科学中数据空间重构最新研究进展[J]. 经济地理, 2020, 40(11): 47-55, 94.

    Google Scholar

    Xia T, Wu W J, Wu W B, et al. Research progress of geographic data by space reconstruction[J]. Economic Geography, 2020, 40(11): 47-55, 94.

    Google Scholar

    [26] 邓晓玲, 李金忠. GIS软件在资产清查数据分析中的应用[J]. 电子技术, 2021, 50(1): 100-101.

    Google Scholar

    Deng X L, Li J Z. Application of GIS software in data analysis of asset inventory[J]. Electronic Technology, 2021, 50(1): 100-101.

    Google Scholar

    [27] 喻忠伟, 周高伟, 张栋, 等. 基于ArcGIS的输电线路通道清理数据库建设研究[J]. 电力设备管理, 2021(2): 181-183.

    Google Scholar

    Yu Z W, Zhou G W, Zhang D, et al. Construction of the ArcGIS based database of electric power supply line and path cleaning[J]. Electric Power Equipment Management, 2021(2): 181-183.

    Google Scholar

    [28] 何春秀. 浅谈基于ArcMap的制图符号设计与应用[J]. 测绘与空间地理信息, 2021, 44(1): 207-209.

    Google Scholar

    He C X. Design and application of cartographic symbols based on ArcMap[J]. Geomatics and Spatial Information Technology, 2021, 44(1): 207-209.

    Google Scholar

    [29] 赵成福. 基于ArcGIS的矢量数据入库更新技术及其实现[J]. 地理空间信息, 2014, 12(2): 96-97.

    Google Scholar

    Zhao C F. Research and realization of vector data storage update based on the ArcGIS[J]. Geospatial Information, 2014, 12(2): 96-97.

    Google Scholar

    [30] 刘刚, 吴冲龙, 何珍文, 等. 面向地质时空大数据表达与存储管理的数据模型研究[J]. 地质科技通报, 2020, 39(1): 164-174.

    Google Scholar

    Liu G, Wu C L, He Z W, et al. Data model for geological spatiotemporal big data expression and storage management[J]. Bulletin of Geological Science and Technology, 2020, 39(1): 164-174.

    Google Scholar

    [31] Price M著. 李玉龙, 何学洲, 李娜, 等译. ArcGis地理信息系统教程[M]. 北京: 电子工业出版社, 2017: 304-327.

    Google Scholar

    Price M(Author). Li Y L, He X Z, Li N (Translator). ArcGIS geographic information system[M]. Beijing: Publishing House of Electronics Industry, 2017: 304-327.

    Google Scholar

    [32] 陈旭, 严丽, 马宗民, 等. 基于UML类图的模糊时空数据建模[J]. 计算机应用研究, 2019, 36(2): 481-485.

    Google Scholar

    Chen X, Yan L, Ma Z M, et al. Fuzzy spatiotemporal data modeling with UML class diagram[J]. Application Research of Computers, 2019, 36(2): 481-485.

    Google Scholar

    [33] 董晓明, 闵绍荣, 雷静, 等. 基于UML和XML的数据建模方法及应用[J]. 系统仿真学报, 2010, 22(9): 2048-2051, 2055.

    Google Scholar

    Dong X M, Min S R, Lei J, et al. Method and application of data modeling based on UML and XML[J]. Journal of System Simulation, 2010, 22(9): 2048-2051, 2055.

    Google Scholar

    [34] Messaoud A, Renaud R, Choukri-Bey B Y, et al. Formal modeling and verification of UML Activity Diagrams (UAD) with FoCaLiZe[J]. Journal of Systems Architecture, 2021, doi:https://doi.org/10.1016/j.sysarc.2020.101911.

    CrossRef Google Scholar

    [35] 刘博. 标准建模语言UML概述[J]. 信息与电脑, 2009, 21(11): 122.

    Google Scholar

    Liu B. Overview of unified modeling language UML[J]. China Computer & Communication, 2009, 21(11): 122.

    Google Scholar

    [36] 封碧峰. 基于Geodatabase的水文地质环境数据模型的研究[J]. 经纬天地, 2020(5): 79-84.

    Google Scholar

    Feng B F. Study on the Geodatabase based environment data model of hydrogeology[J]. Survey World, 2020(5): 79-84.

    Google Scholar

    [37] 曲翠玉. 基于UML的门诊管理系统的分析与设计[J]. 信息与电脑, 2020, 32(22): 102-104.

    Google Scholar

    Qu C Y. Analysis and design of outpatient management system based on UML[J]. China Computer & Communication, 2020, 32(22): 102-104.

    Google Scholar

    [38] 马文涛, 陈宜金, 王淼淼, 等. 一种Shapefile文件的剖析及读写方法[J]. 北京测绘, 2018, 32(12): 1517-1521.

    Google Scholar

    Ma W T, Chen Y J, Wang M M, et al. Analysis and reading and writing method of a Shapefile[J]. Beijing Surveying and Mapping, 2018, 32(12): 1517-1521.

    Google Scholar

    [39] 曹昌磊, 赵雪莲, 梅红波. MapGIS向Shapefile数据格式转换插件开发及其应用[J]. 国土资源遥感, 2016, 28(2): 193-197.

    Google Scholar

    Cao C L, Zhao X L, Mei H B. Research on data conversion from MapGIS to Shapefile[J]. Remote Sensing for Land and Resources, 2016, 28(2): 193-197.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(2133) PDF downloads(76) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint