Citation: | LI Hao-nan, REN Xiang-wen, SONG Zhao-jun, LI Huai-ming, WANG Wen-yu. Studies on Analysis Conditions of Specific Surface Area of Polymetallic Nodules[J]. Rock and Mineral Analysis, 2021, 40(3): 435-443. doi: 10.15898/j.cnki.11-2131/td.202008140114 |
Polymetallic nodules are predominant in deep sea sedimentary mineral resources due to the enrichment of many critical metals. Polymetallic nodules are loose and porous, which is the critical material feature that contributes the adsorption of trace metals from seawater and pore water and then enrichment and mineralization. Therefore, specific surface area (SSA) is one of the key factors for studying the ore-forming process of polymetallic nodules. At present, the methods for SSA determination are well-developed. However, they are less applied in the analysis of the specific surface of polymetallic nodules, and the pretreatment conditions are not constant according to various research targets.
In order to explore the pretreatment conditions for the BET SSA analysis of polymetallic nodules, and provide necessary parameters for the study of the enrichment of trace metals in polymetallic nodules.
Polymetallic nodules from the Atlantic, Indian, and Pacific oceans were collected. The pretreatment conditions including temperature, duration, and particle size for SSA analysis of polymetallic nodules were studies by applying temperature programming, heating accumulation, and particle size comparing methods.
The results showed that the analysis values of SSA reached plateau when the heating temperature ranged from 210℃to 350℃. The analysis values of SSA remained constant after heating for 3 hours by a step of 1 hour at 210℃. The SSA values of samples with a size of several millimeters were 1.027-28.535m2/g higher compared with those of the same samples crushed into microns.
Reliable SSA values can be obtained when the polymetallic nodules with sizes of several millimeters are heated in a vacuum system for 3 hours at 210℃, which is the pretreatment condition for analyzing SSA of mineralization-related polymetallic nodules.
[1] | Hein J R, Koschinsky A, Kuhn T. Deep-ocean polymetallic nodules as a resource for critical materials[J]. Nature Reviews Earth & Environment, 2020, 1: 158-169. |
[2] | Hein J R, Mizell K, Koschinsky A, et al. Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: Comparison with land-based resources[J]. Ore Geology Reviews, 2013, 51: 1-14. doi: 10.1016/j.oregeorev.2012.12.001 |
[3] | Hein J R, Spinardi F, Okamoto N, et al. Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions[J]. Ore Geology Reviews, 2015, 68: 97-116. doi: 10.1016/j.oregeorev.2014.12.011 |
[4] | Fu Y Z, Wen H J. Variabilities and enrichment mechanisms of the dispersed elements in marine Fe-Mn deposits from the Pacific Ocean[J]. Ore Geology Reviews, 2020, 121: 103470. |
[5] | Morgan C L. Resource estimates of the Clarion-Clipperton manganese nodule deposits[M]//Cronan D S. Handbook of marine mineral deposits. Florida: CRC Press, 2000: 145-170. |
[6] | 陈其慎, 张艳飞, 贾德龙, 等. 全球矿业发展报告2019[N]. 北京: 中国矿业报社, 2019. Chen Q S, Zhang Y F, Jia D L, et al. Global mining development report 2019[N]. Beijing: China Mining News Agency, 2019. |
[7] | 杨卉芃, 王威. 全球钴矿资源现状及开发利用趋势[J]. 矿产保护与利用, 2019(5): 41-49. Yang H P, Wang W. Global cobalt resources status and exploitation trends[J]. Conservation and Utilization of Mineral Resources, 2019(5): 41-49. |
[8] | 董志国, 王鸣, 李晓欣, 等. 航空发动机涡轮叶片材料的应用与发展[J]. 钢铁研究学报, 2011, 23(Supplement 2): 455-457. Dong Z G, Wang M, Li X X, et al. Application and progress of materials for turbine blade of aeroengine[J]. Journal of Iron and Steel Research, 2011, 23(Supplement 2): 455-457. |
[9] | Kuhn T, Wegorzewski A, Rühlemann C, et al. Composition, formation, and occurrence of polymetallic nodules[M]//Sharma R. Deep-sea mining. Switzerland: Springer, 2017: 23-63. |
[10] | Biller D V, Bruland K W. Analysis of Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb in seawater using the Nobias-chelate PA1 resin and magnetic sector inductively coupled plasma mass spectrometry (ICP-MS)[J]. Marine Chemistry, 2012, 130-131: 12-20. doi: 10.1016/j.marchem.2011.12.001 |
[11] | Tamura H, Katayama N, Furuichi R. The Co2+ adsorption properties of Al2O3, Fe2O3, Fe3O4, TiO2 and MnO2 evaluated by modeling with the Frumkin isotherm[J]. Journal of Colloid and Interface Science, 1997, 195: 192-202. |
[12] | Hein J R, Koschinsky A. Deep-ocean ferromanganese crusts and nodules[M]. Holland H D, Turekian K K. Treatise on geochemistry (The second edition). Oxford: Elsevier, 2014: 273-291. |
[13] | Huk C A, Ku T L. Radiochemical observations on manganese nodules from three sedimentary environments in the North Pacific[J]. Geochemica et Cosmochimica Acta, 1984, 48: 951-963. |
[14] | Li D F, Fu Y, Sun X, et al. Critical metal enrichment mechanism of deep-sea hydrogenetic nodules: Insights from mineralogy and element mobility[J]. Ore Geology Reviews, 2020, 118: 1-13. |
[15] | 刘珍, 曲希玉, 王伟庆, 等. 比表面积氮气吸附法在蒙脱石碱性溶蚀表征中的应用[J]. 岩矿测试, 2016, 35(6): 603-611. Liu Z, Qu X Y, Wang W Q, et al. Application of specific surface area nitrogen adsorption method to characterize the alkaline dissolution of montmorillonite[J]. Rock and Mineral Analysis, 2016, 35(6): 603-611. |
[16] | 梁建伟, 房营光, 谷任国. 极细粒黏土的比表面积测试与分析[J]. 科学技术与工程, 2009, 9(9): 2371-2377. Liang J W, Fang Y G, Gu R G. Experiment and analysis of specific area of tiny-particle clay[J]. Science Technology and Engineering, 2009, 9(9): 2371-2377. |
[17] | 唐洪明, 王俊杰, 张烈辉, 等. 页岩比表面积测试方法与控制因素研究[J]. 天然气地球科学, 2015, 26(11): 2009-2016. Tang H M, Wang J J, Zhang L H, et al. Testing method and controlling factors of specific surface area of shales[J]. Natural Gas Geoscience, 2015, 26(11): 2009-2016. |
[18] | 陈生蓉, 帅琴, 高强, 等. 基于扫描电镜-氮气吸脱附和压汞法的页岩孔隙结构研究[J]. 岩矿测试, 2015, 34(6): 36-42. Chen S R, Shuai Q, Gao Q, et al. Analysis of the pore structure of shale in Ordos Basin by SEM with sitrogen gas adsorption-desorption[J]. Rock and Mineral Analysis, 2015, 34(6): 36-42. |
[19] | Mastalerz M, Wei L, Drobniak A, et al. Responses of specific surface area and micro-and mesopore characteristics of shale and coal to heating at elevated hydrostatic and lithostatic pressures[J]. International Journal of Coal Geology, 2018, 197: 20-30. |
[20] | Xiong F Y, Jiang Z X, Li P, et al. Pore structure of transitional shales in the Ordos Basin, NW China: Effects of composition on gas storage capacity[J]. Fuel, 2017, 206: 504-515. |
[21] | Chen L, Jiang Z X, Liu K Y, et al. A combination of N2 adsorption to characterize nanopore structure of organic-rich Lower Silurian shale in the Upper Yangtze Platform, South China: Implications for shale sorption capacity[J]. Acta Geologica Sinica, 2017, 91(4): 1380-1394. |
[22] | Bl the M, Wegorzewski A, Müller C, et al. Manganese-cycling microbial communities inside deep-sea manganese nodules[J]. Environmental Science and Technology, 2015, 49(13): 7692-7700. |
[23] | Stashchuk M F, Chervonetsky D V, Kaplun E V, et al. Adsorption properties of ferromanganese crusts and nodules[M]. Northwest Pacific and Bering Sea sediment geochemistry and paleoceanographic studies, 1994. |
[24] | Parida K M, Satapathy P K, Das N N, et al. Studies on Indian Ocean manganese nodules Part 2: Physico-chemical characteristics and catalytic activity of heat-treated marine manganese nodules[J]. Journal of Colloid and Interface Science, 1996, 179: 241-248. |
[25] | 薛婷. 太平洋海山富钴结壳地球化学特征及成矿元素富集机制[D]. 广州: 中山大学, 2007. Xue T. Geochemical characters and ore-forming elements enrichment mechanism of ferromanganese crusts from Pacific Ocean[D]. Guangzhou: Sun Yat-Sen University, 2007. |
[26] | Glasby G P. Manganese: Predominantrole of nodules and crusts[M]//Schulz H D, Zabel M. Marine geochemistry (2nd edition). Berlin: Springer, 2006: 371-427. |
[27] | 钱江初, 初凤友, 冯旭文. 大洋多金属结核中几种常见锰矿相的特征及其相关性[J]. 矿物学报, 2006, 26(2): 152-158. Qian J C, Chu F Y, Feng X W. The main manganates in the polymetallic nodules and their correlations[J]. Acta Mineralogica Sinica, 2006, 26(2): 152-158. |
Comparison of standard sample test value and error range
Variation curves of specific surface area and degassing weight loss of temperature program experiment
Specific surface area distribution of pretreatment time experiment