Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 5
Article Contents

LI Jin, TANG Suo-han, MA Jian-xiong, ZHU Xiang-kun. Principles and Treatment Methods for Metal Isotopes Analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166
Citation: LI Jin, TANG Suo-han, MA Jian-xiong, ZHU Xiang-kun. Principles and Treatment Methods for Metal Isotopes Analysis[J]. Rock and Mineral Analysis, 2021, 40(5): 627-636. doi: 10.15898/j.cnki.11-2131/td.202012150166

Principles and Treatment Methods for Metal Isotopes Analysis

More Information
  • BACKGROUND

    In the past twenty years, methods for metal isotopes analysis (iron, copper, zinc, magnesium, calcium, lithium, molybdenum, selenium, mercury, chromium, cadmium, alum, barium, titanium, etc.) have been established. The sample pretreatment during metal isotope analysis includes two processes: the digestion of the sample; and the separation and purification of the analyzed elements. In order to ensure the accuracy and precision of metal isotopes data, two general principles of sample treatment must be followed. Elements that may interfere with the isotope analysis of the analyzed elements should not be introduced into the analysis. The analyzed elements should not be lost during the experiment.

    OBJECTIVES

    In order to understand the pretreatment methods for metal isotope analysis.

    METHODS

    Common sample digestion methods and chemical separation (ion exchange separation) were introduced in detail and were discussed in this paper.

    RESULTS

    The common sample digestion method for metal isotope analysis is the acid dissolution method (Teflon bombs and microwave digestion). The separation and purification of the element to be measured mainly uses the ion exchange separation method. The same resin can be used for the chemical separation of different elements, and the same element can also be chemically separated by using different resins. The matrices of different types of samples are quite different, and different processes are required to separate the analyzed elements. The separation requirements of different samples can be met by changing the separation process of the predecessors, including changing the resin or the amount, changing the eluent or the amount, and increasing the separation steps.

    CONCLUSIONS

    Based on the authors' experience, details should be paid attention to during treatments for metal isotope analysis: (1) HClO4 must be thoroughly removed at high temperature during sample digestion, because its strong oxidization can destroy the effectiveness of resins; (2) when the same volume of resin is put into the column, the thinner the column is, the slower the flow rate of the eluent, and the later elution of the elements to be measured; (3) the smaller the volume of the eluent added each time, the better the separation effect during ion exchange purification.

  • 加载中
  • [1] Teng F Z, Dauphas N, Watkins J M. Non-traditional stable isotopes: Retrospective and prospective[J]. Reviews in Mineralogy & Geochemistry, 2017, 82: 1-26.

    Google Scholar

    [2] Zhang S, Wang X, Wang H, et al. Sufficient oxygen for animal respiration 1400 million years ago[J]. Proceedings of the National Academy of Sciences, 2016, 113: 1731-1736. doi: 10.1073/pnas.1523449113

    CrossRef Google Scholar

    [3] Ye Y, Zhang S, Wang H, et al. Black shale Mo isotope record reveals dynamic ocean redox during the Mesoproterozoic Era[J]. Geochemical Perspectives Letters, 2021, 18: 16-21. doi: 10.7185/geochemlet.2118

    CrossRef Google Scholar

    [4] Luo J, Long X, Bowyer F T, et al. Pulsed oxygenation events drove progressive oxygenation of the Early Mesoproterozoic Ocean[J]. Earth and Planetary Science Letters, 2021, 559: 116754. doi: 10.1016/j.epsl.2021.116754

    CrossRef Google Scholar

    [5] Hohl S V, Jiang S Y, Wei H Z, et al. Cd isotopes trace periodic (bio)geochemical metal cycling at the verge of the Cambrian animal evolution[J]. Geochimica Et Cosmochimica Acta, 2019, 263: 195-214. doi: 10.1016/j.gca.2019.07.036

    CrossRef Google Scholar

    [6] Zhang Y, Wen H, Zhu C, et al. Cadmium isotopic evidence for the evolution of marine primary productivity and the biological extinction event during the Permian-Triassic crisis from the Meishan Section, South China[J]. Chemical Geology, 2018, 481: 110-118. doi: 10.1016/j.chemgeo.2018.02.005

    CrossRef Google Scholar

    [7] Mänd K, Planavsky N J, Porte S M, et al. Chromium evidence for protracted oxygenation during the Paleoproterozoic[J]. Science Advances, 2021, doi: 10.31223/X5NP6G.

    CrossRef Google Scholar

    [8] Wei W, Klaebe R, Ling H F, et al. Biogeochemical cycle of chromium isotopes at the modern Earth's surface and its applications as a paleo-environment proxy[J]. Chemical Geology, 2020, 541: 119570. doi: 10.1016/j.chemgeo.2020.119570

    CrossRef Google Scholar

    [9] Wei W, Frei R, Klaebe R, et al. A transient swing to higher oxygen levels in the atmosphere and oceans at~1.4Ga[J]. Precambrian Research, 2021, 354: 106058. doi: 10.1016/j.precamres.2020.106058

    CrossRef Google Scholar

    [10] 《岩石矿物分析》编委会. 岩石矿物分析(第四版)[M]. 北京: 地质出版社, 2011. The Editorial Committee of 《Rock and mineral analysis》. Rock and mineral analysis (The Fourth Edition)[M]. Beijing: Geological Publishing House, 2011.

    Google Scholar

    The Editorial Committee of 《Rock and mineral analysis》. Rock and mineral analysis (The Fourth Edition)[M]. Beijing: Geological Publishing House, 2011.

    Google Scholar

    [11] 黄敏文, 苑星海, 林穗云, 等. 化学分析的样品处理[M]. 北京: 化学工业出版社, 2007.

    Google Scholar

    Huang M W, Yuan X H, Lin S Y, et al. Sample processing for chemical analysis[M]. Beijing: Chemical Industry Press, 2007.

    Google Scholar

    [12] 余自立, 程光磊. 金属离子分析技术[M]. 北京: 化学工业出版社, 2004.

    Google Scholar

    Yu Z L, Cheng G L. Analysis technology of metal ion[M]. Beijing: Chemical Industry Press, 2004.

    Google Scholar

    [13] Malinovsky D, Rodushkin I, Baxter D C, et al. Molybdenum isotope ratio measurements on geological samples by MC-ICPMS[J]. International Journal of Mass Spectrometry, 2005, 245: 94-107. doi: 10.1016/j.ijms.2005.07.007

    CrossRef Google Scholar

    [14] 闫斌, 朱祥坤, 陈岳龙. 样品量的大小对铜锌同位素测定值的影响[J]. 岩矿测试, 2011, 30(4): 400-405. doi: 10.3969/j.issn.0254-5357.2011.04.004

    CrossRef Google Scholar

    Yan B, Zhu X K, Chen Y L. Effects of sample size on Cu and Zn isotope ratio measurements[J]. Rock and Mineral Analysis, 2011, 30(4): 400-405. doi: 10.3969/j.issn.0254-5357.2011.04.004

    CrossRef Google Scholar

    [15] 张宗清, 叶笑江. 稀土元素的质谱同位素稀释分析和143Nd/144Nd比值的精确测定方法[J]. 中国地质科学院地质研究所所刊, 1987, 17: 108-128.

    Google Scholar

    Zhang Z Q, Ye X J. Mass-spectrometric isotope dilution analysis of REE and precise measurement of 143Nd/144Nd ratios[J]. Bulletin of the Institute of Geology Chinese Academy of Geological Sciences, 1987, 17: 108-128.

    Google Scholar

    [16] Goldberg T, Gordon G, Izon G, et al. Resolution of inter-laboratory discrepancies in Mo isotope data: An intercalibration[J]. Journal of Analytical Atomic Spectrometry, 2013, 28: 724-735. doi: 10.1039/c3ja30375f

    CrossRef Google Scholar

    [17] 李世珍, 朱祥坤, 吴龙华, 等. 干法灰化和湿法消解植物样品的铜锌铁同位素测定对比研究[J]. 地球学报, 2011, 32(6): 754-760. doi: 10.3975/cagsb.2011.06.14

    CrossRef Google Scholar

    Li S Z, Zhu X K, Wu L H, et al. A comparative study of plant sample preparation by dry ashing and wet digestion for isotopic determination of Cu, Zn and Fe[J]. Acta Geoscientica Sinica, 2011, 32(6): 754-760. doi: 10.3975/cagsb.2011.06.14

    CrossRef Google Scholar

    [18] Andersen M, Vance D, Archer C, et al. The Zn abundance and isotopic composition of diatom frustules, a proxy for Zn availability in ocean surface seawater[J]. Earth and Planetary Science Letters, 2011, 301: 137-145. doi: 10.1016/j.epsl.2010.10.032

    CrossRef Google Scholar

    [19] Abouchami W, Galer S J G, de Baar H J W, et al. Modulation of the Southern Ocean cadmium isotope signature by ocean circulation and primary productivity[J]. Earth and Planetary Science Letters, 2011, 305: 83-91. doi: 10.1016/j.epsl.2011.02.044

    CrossRef Google Scholar

    [20] Foster G L, Pogge von Strandmann P A E, Rae J W B. Boron and magnesium isotopic composition of seawater[J]. Geochemistry, Geophysics, Geosystems, 2010, 11: 8.

    Google Scholar

    [21] Ling M X, Sedaghatpour F, Teng F Z, et al. Homogeneous magnesium isotopic composition of seawater: An excellent geostandard for Mg isotope analysis[J]. Rapid Communications in Mass Spectrometry, 2011, 25: 2828-2836. doi: 10.1002/rcm.5172

    CrossRef Google Scholar

    [22] Schmitt A D, Bracke G, Stille P, et al. The calcium isotope composition of modern seawater determined by thermal ionization mass spectrometry[J]. Geostandards Newsletter, 2001, 25: 267-275. doi: 10.1111/j.1751-908X.2001.tb00602.x

    CrossRef Google Scholar

    [23] Bonnand P, Parkinson I J, James R H, et al. Accurate and precise determination of stable Cr isotope compositions in carbonates by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26: 528-535. doi: 10.1039/c0ja00167h

    CrossRef Google Scholar

    [24] Vance D, Archer C, Bermin J, et al. The copper isotope geochemistry of rivers and the oceans[J]. Earth and Planetary Science Letters, 2008, 274: 204-213. doi: 10.1016/j.epsl.2008.07.026

    CrossRef Google Scholar

    [25] 唐索寒, 王进辉, 朱祥坤, 等. 肉类制品中微量锶的分离及87Sr/86Sr同位素比值测定[J]. 分析化学, 2008, 36(1): 52-56. doi: 10.3321/j.issn:0253-3820.2008.01.010

    CrossRef Google Scholar

    Tang S H, Wang J H, Zhu X K. Separation and isotopic measurement of Sr in meat products[J]. Chinese Journal of Analytical Chemistry, 2008, 36(1): 52-56. doi: 10.3321/j.issn:0253-3820.2008.01.010

    CrossRef Google Scholar

    [26] 燕娜, 赵小龙, 赵生国, 等. 红土镍矿样品前处理方法和分析测定技术研究进展[J]. 岩矿测试, 2015, 34(1): 1-11.

    Google Scholar

    Yan N, Zhao X S, Zhao S G, et al. Research progress on sample preparation methods and analytical techniques for nickel laterite[J]. Rock and Mineral Analysis, 2015, 34(1): 1-11.

    Google Scholar

    [27] Rouxel O, Ludden J, Carignan J, et al. Natural variations of Se isotopic composition determined by hydride generation multiple collector inductively coupled plasma mass spectrometry[J]. Geochimica Et Cosmochimica Acta, 2002, 66: 3191-3199. doi: 10.1016/S0016-7037(02)00918-3

    CrossRef Google Scholar

    [28] Foucher D, Hintelmann H. High-precision measurement of mercury isotope ratios in sediments using cold-vapor generation multi-collector inductively coupled plasma mass spectrometry[J]. Analytical and Bioanalytical Chemistry, 2006, 384: 1470-1478. doi: 10.1007/s00216-006-0373-x

    CrossRef Google Scholar

    [29] Tan D, Zhu J M, Wang X, et al. High-sensitivity determination of Cd isotopes in low-Cd geological samples by double spike MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35: 713-727. doi: 10.1039/C9JA00397E

    CrossRef Google Scholar

    [30] Millet M A, Dauphas N. Ultra-precise titanium stable isotope measurements by double-spike high resolution MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(8): 1444-1458. doi: 10.1039/C4JA00096J

    CrossRef Google Scholar

    [31] Schoenberg R, Merdian A, Holmden C, et al. The stable Cr isotopic compositions of chondrites and silicate planetary reservoirs[J]. Geochimica Et Cosmochimica Acta, 2016, 183: 14-30. doi: 10.1016/j.gca.2016.03.013

    CrossRef Google Scholar

    [32] 《化学分离富集方法及应用》编委会. 化学分离富集方法及应用[M]. 长沙: 中南工业大学出版社, 2001. The editorial committee of 《Method and application of chemical separation and preconcentration》. Method and application of chemical separation and preconcentration[M]. Changsha: Zhongnan University of Technology Press, 2011.

    Google Scholar

    [33] 石影, 訾言勤. 定量化学分离方法[M]. 北京: 中国矿业大学出版社, 2001.

    Google Scholar

    Shi Y, Zi Y Q. Quantitative chemical separation method[M]. Beijing: China University of Mining and Technology Press, 2001.

    Google Scholar

    [34] Korkish J. Handbook of ion exchange resins: Their appli-cation to inorganic analytical chemistry[M]. 1989.

    Google Scholar

    [35] 唐索寒, 朱祥坤, 蔡俊军, 等. 用于多接收器等离子体质谱铜铁锌同位素测定的离子交换分离方法[J]. 岩矿测试, 2006, 25(1): 5-8. doi: 10.3969/j.issn.0254-5357.2006.01.002

    CrossRef Google Scholar

    Tang S H, Zhu X K, Cai J J, et al. Chromatographic separation of Cu, Fe and Zn using AGMP-1 anion exchange resin for isotope determination by MC-ICPMS[J]. Rock and Mineral Analysis, 2006, 25(1): 5-8. doi: 10.3969/j.issn.0254-5357.2006.01.002

    CrossRef Google Scholar

    [36] AG®1, AG MP-1 and AG 2 strong anion exchange resin instruction manual[R].

    Google Scholar

    [37] Dauphas N, Janney P E, Mendybaev R A, et al. Chromato-graphic separation and multicollection-ICPMS analysis of iron: Investigating mass-dependent and -independent isotope effects[J]. Analytical Chemistry, 2004, 76(19): 5855-5863. doi: 10.1021/ac0497095

    CrossRef Google Scholar

    [38] Tang H, Dauphas N, Craddock P R. High precision iron isotopic analyzes of meteorites and terrestrial rocks: 60Fe distribution and mass fractionation laws[C]//Proceedings of the 40th Lunar and Planetary Science Conference, 2009: 1903.

    Google Scholar

    [39] Maréchal C, Albarède F. Ion-exchange fractionation of copper and zinc isotopes[J]. Geochimica Et Cosmochimica Acta, 2002, 66: 1499-1509. doi: 10.1016/S0016-7037(01)00815-8

    CrossRef Google Scholar

    [40] 唐索寒, 朱祥坤. AG MP-1阴离子交换树脂元素分离方法研究[J]. 高校地质学报, 2006, 12(3): 398-403. doi: 10.3969/j.issn.1006-7493.2006.03.014

    CrossRef Google Scholar

    Tang S H, Zhu X K. Separation of some elements using AG MP-1 anion exchange resin[J]. Geological Journal of China Universities, 2006, 12(3): 398-403. doi: 10.3969/j.issn.1006-7493.2006.03.014

    CrossRef Google Scholar

    [41] 唐索寒, 李津, 马健雄, 等. 地质样品中钛的化学分离及双稀释剂法钛同位素测定[J]. 分析化学, 2018, 46(10): 1618-1627. doi: 10.11895/j.issn.0253-3820.181431

    CrossRef Google Scholar

    Tang S H, Li J, Ma J X, et al. Titanium separation and titanium isotope determination by double spike multicollector inductively coupled plasma mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(10): 1618-1627. doi: 10.11895/j.issn.0253-3820.181431

    CrossRef Google Scholar

    [42] 何连花, 刘季花, 张俊, 等. MC-ICPMS测定富钴结壳中的铜锌同位素的化学分离方法研究[J]. 分析测试学报, 2016, 35(10): 1347-1350. doi: 10.3969/j.issn.1004-4957.2016.10.023

    CrossRef Google Scholar

    He L H, Liu J H, Zhang J, et al. Separation of Cu and Zn in cobalt-rich crusts for isotope determination by MC-ICPMS[J]. Journal of Instrumental Analysis, 2016, 35(10): 1347-1350. doi: 10.3969/j.issn.1004-4957.2016.10.023

    CrossRef Google Scholar

    [43] Cloquet C, Rouxel O, Carignan J, et al. Natural cadmium isotopic variations in eight geological reference materials (NIST SRM 2711, BCR 176, GSS-1, GXR-1, GXR-2, GSD-12, Nod-P-1, Nod-A-1) and anthropogenic samples, measured by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2005, 29(1): 95-106. doi: 10.1111/j.1751-908X.2005.tb00658.x

    CrossRef Google Scholar

    [44] 张羽旭, 温汉捷, 樊海峰, 等. Cd同位素地质样品的预处理方法研究[J]. 分析测试学报, 2010, 29(6): 633-637.

    Google Scholar

    Zhang Y X, Wen H J, Fan H F, et al. Chemical pre-treatment methods for measurement of Cd isotopic ratio on geological samples[J]. Journal of Instrumental Analysis, 2010, 29(6): 633-637.

    Google Scholar

    [45] Ripperger S, Rehkämper M. Precise determination of cadmium isotope fractionation in seawater by double spike MC-ICPMS[J]. Geochimica Et Cosmochimica Acta, 2007, 71(3): 631-642. doi: 10.1016/j.gca.2006.10.005

    CrossRef Google Scholar

    [46] 唐索寒, 闫斌, 李津. 少量AG1-X4阴离子交换树脂分离地质标样中的铁及铁同位素测定[J]. 地球化学, 2013, 42(1): 46-52. doi: 10.3969/j.issn.0379-1726.2013.01.006

    CrossRef Google Scholar

    Tang S H, Yan B, Li J. Separation of Fe using a small amount of AG1-X4 anion exchange resin and Fe isotope compositions of geological reference materials[J]. Geochimica, 2013, 42(1): 46-52. doi: 10.3969/j.issn.0379-1726.2013.01.006

    CrossRef Google Scholar

    [47] Chang V T C, Makishima A, Belshawa N S, et al. Purification of Mg from low-Mg biogenic carbonates for isotope ratio determination using multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2003, 18: 296-301. doi: 10.1039/b210977h

    CrossRef Google Scholar

    [48] 李世珍, 朱祥坤, 何学贤, 等. 用于多接收器等离子体质谱Mg同位素测定的分离方法研究[J]. 岩石矿物学杂志, 2008, 27(5): 449-456. doi: 10.3969/j.issn.1000-6524.2008.05.010

    CrossRef Google Scholar

    Li S Z, Zhu X K, He X X, et al. Separation of Mg for isotope determination by MC-ICPMS[J]. Acta Petrologica Et Mineralogica, 2008, 27(5): 449-456. doi: 10.3969/j.issn.1000-6524.2008.05.010

    CrossRef Google Scholar

    [49] Bolou-Bi E B, Vigier N, Brenot A, et al. Magnesium isotope compositions of natural reference materials[J]. Geostandards and Geoanalytical Research, 2009, 33(1): 95-109. doi: 10.1111/j.1751-908X.2009.00884.x

    CrossRef Google Scholar

    [50] Marshall B D, DePaolo D J. Precise age determination and petrogenetic studies using the K-Ca method[J]. Geochimica Et Cosmochimica Acta, 1982, 46: 2537-2545. doi: 10.1016/0016-7037(82)90376-3

    CrossRef Google Scholar

    [51] He Y, Wang Y, Zhu C W, et al. Mass-independent and mass-dependent Ca isotopic compositions of thirteen geological reference materials measured by thermal ionization mass spectrometry[J]. Geostandards and Geoanalytical Research, 2017, 41(2): 283-302. doi: 10.1111/ggr.12153

    CrossRef Google Scholar

    [52] Pietruszka A J, Walker R J, Candela P A. Determination of mass-dependent molybdenum isotopic variations by MC-ICP-MS: An evaluation of matrix effects[J]. Chemical Geology, 2006, 225: 121-136. doi: 10.1016/j.chemgeo.2005.09.002

    CrossRef Google Scholar

    [53] Pearce C R, Cohen A S, Parkinson I J. Quantitative separation of molybdenum and rhenium from geological materials for isotopic determination by MC-ICP-MS[J]. Geostandards and Geoanalytical Research, 2009, 33(2): 219-229. doi: 10.1111/j.1751-908X.2009.00012.x

    CrossRef Google Scholar

    [54] Li J, Zhu X K, Tang S H, et al. High-precision measurement of molybdenum isotopic compositions of selected geochemical reference materials[J]. Geostandards and Geoanalytical Research, 2016, 40(3): 405-415. doi: 10.1111/j.1751-908X.2015.00369.x

    CrossRef Google Scholar

    [55] Schoenberg R, Zink S, Staubwasser M, et al. The stable Cr isotope inventory of solid earth reservoirs determined by double spike MC-ICP-MS[J]. Chemical Geology, 2008, 249: 294-306. doi: 10.1016/j.chemgeo.2008.01.009

    CrossRef Google Scholar

    [56] Schiller M, van Kooten E, Holst J C, et al. Precise mea-surement of chromium isotopes by MC-ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2014, 29: 1406-1416. doi: 10.1039/C4JA00018H

    CrossRef Google Scholar

    [57] Li C F, Feng L J, Wang X C, et al. Precise measurement of Cr isotope ratios using a highly sensitive Nb2O5 emitter by thermal ionization mass spectrometry and an improved procedure for separating Cr from geological materials[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(12): 2375-2383. doi: 10.1039/C6JA00265J

    CrossRef Google Scholar

    [58] Makishima A, Zhu X K, Belshaw N S, et al. Separation of titanium from silicates for isotopic ratio determination using multiple collector ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2002, 17: 1290-1294. doi: 10.1039/b204349a

    CrossRef Google Scholar

    [59] 唐索寒, 朱祥坤, 赵新苗, 等. 离子交换分离和多接收等离子体质谱法高精度测定钛同位素的组成[J]. 分析化学, 2011, 39(12): 1830-1835.

    Google Scholar

    Tang S H, Zhu X K, Zhao X M, et al. Ion exchange chromatography and multicollector-inductively coupled plasma-mass spectrometry for high precision isotopic measurements of titanium isotope ratios[J]. Chinese Journal of Analytical Chemistry, 2011, 39(12): 1830-1835.

    Google Scholar

    [60] Zhang J J, Dauphas N, Davis A M, et al. A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites[J]. Journal of Analytical Atomic Spectrometry, 2011, 26: 2197-2205. doi: 10.1039/c1ja10181a

    CrossRef Google Scholar

    [61] Hibiya Y, Iizuka T, Yamashita K, et al. Sequential chem-ical separation of Cr and Ti from a single digest for high-precision isotope measurements of planetary materials[J]. Geostandards and Geoanalytical Research, 2019, 43(1): 133-145. doi: 10.1111/ggr.12249

    CrossRef Google Scholar

    [62] He X, Ma J, Wei G, et al. A new procedure for titanium separation in geological samples for 49Ti/47Ti ratio mea-surement by MC-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35: 100-106. doi: 10.1039/C9JA00316A

    CrossRef Google Scholar

    [63] 孙剑, 朱祥坤, 唐索寒, 等. AG MP-1阴离子交换树脂元素分离方法再研究[J]. 现代地质, 2010, 24(5): 48-51.

    Google Scholar

    Sun J, Zhu X K, Tang S H, et al. Further investigation on elemental separation using AG MP-1 anion exchange resin[J]. Geoscience, 2010, 24(5): 48-51.

    Google Scholar

    [64] 闻静, 张羽旭, 温汉捷, 等. 特殊地质样品中钼同位素分析的化学前处理方法研究[J]. 岩矿测试, 2020, 39(1): 30-40.

    Google Scholar

    Wen J, Zhang Y X, Wen H J, et al. Research on the chemical pretreatment for Mo isotope analysis of special geological samples[J]. Rock and Mineral Analysis, 2020, 39(1): 30-40.

    Google Scholar

    [65] Hastuti A A M B, Costas-Rodríguez M, Anoshkina Y, et al. High-precision isotopic analysis of serum and whole blood Cu, Fe and Zn to assess possible homeostasis alterations due to bariatric surgery[J]. Analytical and Bioanalytical Chemistry, 2020, 412: 727-738. doi: 10.1007/s00216-019-02291-2

    CrossRef Google Scholar

    [66] Frank A B, Klaebe R M, Löhr S, et al. Chromium isotope composition of organic-rich marine sediments and their mineral phases and implications for using black shales as a paleoredox archive[J]. Geochimica Et Cosmochimica Acta, 2020, 270: 338-359. doi: 10.1016/j.gca.2019.11.035

    CrossRef Google Scholar

    [67] Yan B, Zhu X, He X, et al. Zn isotopic evolution in Early Ediacaran ocean: A global signature[J]. Precambrian Research, 2019, 320: 472-483. doi: 10.1016/j.precamres.2018.11.021

    CrossRef Google Scholar

    [68] Fan J J, Li J, Wang Q, et al. High-precision moly-bdenum isotope analysis of low-Mo igneous rock samples by MC-ICP-MS[J]. Chemical Geology, 2020, 545: 119648. doi: 10.1016/j.chemgeo.2020.119648

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(1)

Article Metrics

Article views(2875) PDF downloads(98) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint