Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 3
Article Contents

ZHOU Tian, LIU Fei. Determination of Carbofuran and 3-Hydroxycarbofuran in Groundwater by Small Volume Liquid-Liquid Extraction Combined with GC-MS[J]. Rock and Mineral Analysis, 2021, 40(3): 358-364. doi: 10.15898/j.cnki.11-2131/td.202009050122
Citation: ZHOU Tian, LIU Fei. Determination of Carbofuran and 3-Hydroxycarbofuran in Groundwater by Small Volume Liquid-Liquid Extraction Combined with GC-MS[J]. Rock and Mineral Analysis, 2021, 40(3): 358-364. doi: 10.15898/j.cnki.11-2131/td.202009050122

Determination of Carbofuran and 3-Hydroxycarbofuran in Groundwater by Small Volume Liquid-Liquid Extraction Combined with GC-MS

More Information
  • BACKGROUND

    Carbofuran and 3-hydroxycarbofuran are typical pesticides with the relationship of parent and metabolite. Due to high water solubility and toxicity, carbofuran and 3-hydroxycarbofuran can be transported through surface water or groundwater for long distances, causing harm to human health and environmental safety. In the past, carbofuran and 3-hydroxycarbofuran in samples were usually extracted by liquid or solid phase extraction. However, these methods are cumbersome to operate and time-consuming, which is not conducive to the detection of multiple sets of samples in indoor simulation experiments.

    OBJECTIVES

    In order to realize the rapid quantification of carbofuran and 3-hydroxycarbofuran in groundwater.

    METHODS

    A small volume liquid-liquid extraction pretreatment method was established for extraction, combined with gas chromatography-mass spectrometry to detect factors affecting the extraction efficiency of carbofuran and 3-hydroxycarbofuran. To improve the extraction efficiency of carbofuran and 3-hydroxycarbofuran, [JP] factors such as the type of extraction solvent, pH and dosage of NaCl were optimized.

    RESULTS

    Results showed that the extraction efficiency of carbofuran and 3-hydroxycarbofuran was highest when 1mL methylene chloride was selected as the extraction agent under pH=5, and 40g/L NaCl was added in the water samples. The extraction recoveries for carbofuran and 3-hydroxycarbofuran were 75.1%-98.6% and 55.0%-66.3%, respectively. The performance evaluation results showed that the instrument precision and method precision meet test requirements (n=5, relative standard deviation < 10%). The detection limits of carbofuran and 3-hydroxycarbofuran in water were 15.3μg/L and 10.2μg/L, respectively.

    CONCLUSIONS

    This method is simple and fast with less solvent. Compared with the traditional liquid-liquid extraction method, this method takes about 1/8 time of the former, and consumes about two orders of magnitude less solvent than the former, which can meet the needs of indoor simulation experiments.

  • 加载中
  • [1] Donovan S, Taggart M, Richards N. An overview of the chemistry, manufacture, environmental fate and detection of carbofuran[M]//Richards N. Carbofuran and wildlife poisoning. 2011: 1-18.

    Google Scholar

    [2] 聂荣荣, 何啸峰, 沈洁, 等. GC-MS法测定红薯中克百威和3-羟基克百威的残留量[J]. 食品安全导刊, 2019(3): 152-154.

    Google Scholar

    Nie R R, He X F, Shen J, et al. Determination of carbofuran and 3-hydroxycarbofuran residues in sweet potatoes by GC-MS[J]. China Food Safety Magazine, 2019(3): 152-154.

    Google Scholar

    [3] 杜秋红, 赵国宇, 李玉梅, 等. 呋喃丹特性及生物降解研究进展[J]. 北方园艺, 2010(14): 210-212.

    Google Scholar

    Du Q H, Zhao G Y, Li Y M, et al. Research of carbofuran characteristics and biodegradation[J]. Northern Horticulture, 2010(14): 210-212.

    Google Scholar

    [4] Otieno P O, Lalah J O, Munir V, et al. Soil and water contamination with carbofuran residues in agricultural farmlands in Kenya following the application of the technical formulation Furadan[J]. Journal of Environmental Science and Health, 2010, 45(2): 137-144. doi: 10.1080/03601230903472058

    CrossRef Google Scholar

    [5] 王素利, 杨素萍, 刘丰茂, 等. 液相微萃取技术在农药残留分析中的应用研究进展[J]. 农药学学报, 2012, 14(5): 461-474. doi: 10.3969/j.issn.1008-7303.2012.05.01

    CrossRef Google Scholar

    Wang S L, Yang S P, Liu F M, et al. Review on the application of liquid phase microextraction in pesticide residue analysis[J]. Chinese Journal of Pesticide Science, 2012, 14(5): 461-474. doi: 10.3969/j.issn.1008-7303.2012.05.01

    CrossRef Google Scholar

    [6] Mudiam M K R, Ch R, Saxena P N. Gas chromatography-mass spectrometry based metabolomic approach for optimi-zation and toxicity evaluation of earthworm sub-lethal responses to carbofuran[J]. PLoS One, 2013, 8(12): e81077. doi: 10.1371/journal.pone.0081077

    CrossRef Google Scholar

    [7] Simone M G. Optimization and validation of liquid-liquid extraction with low temperature partitioning for determination of carbamates in water[J]. Analytica Chimica Acta, 2010, 671(1-2): 41-47. doi: 10.1016/j.aca.2010.05.003

    CrossRef Google Scholar

    [8] 杨清华, 史玉坤, 施逸岚, 等. 气相色谱-质谱联用测定蔬菜中克百威、三羟基克百威及丁硫克百威残留[J]. 中国卫生检验杂志, 2017, 27(11): 1539-1541.

    Google Scholar

    Yang Q H, Shi Y K, Shi Y L, et al. Determination of the carbofuran, 3-hydroxycarbofuran and carbosulfan residues in vegetables by gas chromatography mass spectrometry[J]. Chinese Journal of Health Laboratory Technology, 2017, 27(11): 1539-1541.

    Google Scholar

    [9] Otieno P O, Lalah J O, Virani M, et al. Carbofuran and its toxic metabolites provide forensic evidence for furadan exposure in vultures (gyps africanus) in Kenya[J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(5): 536-544. doi: 10.1007/s00128-010-9956-5

    CrossRef Google Scholar

    [10] Ma Q, Liu X L, Zhang Y. Fe3O4 nanoparticles coated with polyhedral oligomeric silsesquioxanes and beta-cyclodextrin for magnetic solid-phase extraction of carbaryl and carbofuran[J]. Journal of Separation Science, 2020, 43(8): 1514-1522. doi: 10.1002/jssc.201900896

    CrossRef Google Scholar

    [11] Zhang W, Li D, Xu Y, et al. Synthesis and application of novel molecularly imprinted solid phase extraction materials based on carbon nanotubes for determination of carbofuran in human serum by high performance liquid chromatography[J]. Journal of Agricultural and Food Chemistry, 2019, 67(18): 5105-5112. doi: 10.1021/acs.jafc.9b00967

    CrossRef Google Scholar

    [12] Zhang C, He H, Yu J, et al. Residues of carbosulfan and its metabolites carbofuran and 3-hydroxy carbofuran in rice field ecosystem in China[J]. Journal of Environmental Science and Health, Part B: Pesticides, Food Contaminants, and Agricultural Wastes, 2016, 51(6): 351-357.

    Google Scholar

    [13] 李晓晶, 于鸿, 杨蓉, 等. 超声辅助分散液液微萃取/超高效液相色谱-串联质谱法检测水中多种磺胺类抗生素残留[J]. 分析测试学报, 2016, 35(10): 1255-1260. doi: 10.3969/j.issn.1004-4957.2016.10.006

    CrossRef Google Scholar

    Li X J, Yu H, Yang R, et al. Ultrasound-assisted dispersion liquid-liquid microextraction/ultra performance liquid chromatography-tandem mass spectrometry for detection of multiple sulfonamide antibiotic residues in water[J]. Journal of Instrumental Analysis, 2016, 35(10): 1255-1260. doi: 10.3969/j.issn.1004-4957.2016.10.006

    CrossRef Google Scholar

    [14] 王青. 超声辅助分散液-液微萃取/高效液相色谱联用测定环境水样中的有机污染物[D]. 兰州: 西北师范大学, 2013.

    Google Scholar

    Wang Q. Determination of organic pollutants in environ-mental water by ultrasonication assisted dispersive liquid-liquid microextraction coupled with HPLC[D]. Lanzhou: Northwest Normal University, 2013.

    Google Scholar

    [15] 王世玉, 刘菲, 吴文勇, 等. 影响12种壬基酚同分异构体液液萃取效率的因素研究[J]. 岩矿测试, 2014, 33(4): 570-577. doi: 10.3969/j.issn.0254-5357.2014.04.019

    CrossRef Google Scholar

    Wang S Y, Liu F, Wu W Y, et al. Study on impact factors of affecting liquid-liquid extraction efficiency of 12 nonylphenol isomers[J]. Rock and Mineral Analysis, 2014, 33(4): 570-577. doi: 10.3969/j.issn.0254-5357.2014.04.019

    CrossRef Google Scholar

    [16] Trotter D M, Kent R A, Wong M P. Aquatic fate and effect of carbofuran[J]. Critical Reviews in Environmental Science and Technology, 1991, 21(2): 137-176.

    Google Scholar

    [17] 李冠华, 沈彬, 张占恩. 液相微萃取GC/MS法测定甲霜灵、三唑酮和二甲戊灵[J]. 苏州科技学院学报(工程技术版), 2008(3): 38-42.

    Google Scholar

    Li G H, Shen B, Zhang Z E. Determination of metalaxyl, triadimefon, pendimet in water using hollow fiber membrane liquid-phase microextraction combined with gas chromatography-mass spectrometry[J]. Journal of University of Science and Technology of Suzhou(Engineering and Technology), 2008(3): 38-42.

    Google Scholar

    [18] 陈志岳. 分析工作中精密度、回收率和准确度的正确计算与表示[J]. 环保科技, 1984(1): 42-46.

    Google Scholar

    Chen Z Y. Correct calculation and expression of precision, recovery rate and accuracy in analytical work[J]. Environmental Protection and Technology, 1984(1): 42-46.

    Google Scholar

    [19] 罗俊凯. 丁硫克百威及其代谢产物在烟田中的残留和水解研究[D]. 长沙: 湖南农业大学, 2014.

    Google Scholar

    Luo J K. The residue and hydrolysis of carbosulfan and its metabolites in tobacco field[D]. Changsha: Hunan Agricultural University, 2014.

    Google Scholar

    [20] 林国斌, 林麟, 杨艳. 化学污染物监测中方法检出限及其确定方法[J]. 海峡预防医学杂志, 2011, 17(2): 61-63.

    Google Scholar

    Lin G B, Lin L, Yang Y. Detection limits and determination methods of chemical pollutant monitoring[J]. Strait Journal of Preventive Medicine, 2011, 17(2): 61-63.

    Google Scholar

    [21] 杨丽莉, 胡恩宇, 母应锋, 等. 水中呋喃丹气相色谱-质谱的测定方法研究[J]. 中国环境监测, 2007, 23(2): 16-19.

    Google Scholar

    Yang L L, Hu E Y, Mu Y F, et al. Determination of carbofuran in water by gas chromatography-mass spectrometry[J]. Environmental Monitoring in China, 2007, 23(2): 16-19.

    Google Scholar

    [22] 侯宪文, 李勤奋, 邓晓, 等. 高效液相色谱法分析丁硫克百威及其降解产物[J]. 农药, 2009, 48(9): 654-655.

    Google Scholar

    Hou X W, Li Q F, Deng X, et al. Analysis of carbofuran and its degradation products by high performance liquid chromatography[J]. Agrochemicals, 2009, 48(9): 654-655.

    Google Scholar

    [23] 白雪媛. 地下水中82种农药测试方法开发与应用[D]. 北京: 中国地质大学(北京), 2017.

    Google Scholar

    Bai X Y. Development and application for test method of 82 kinds of pesticides in groundwater[D]. Beijing: China University of Geosciences (Beijing), 2017.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(4)

Article Metrics

Article views(764) PDF downloads(26) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint