Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 3
Article Contents

DONG Hao-wei, ZHAO Jia-yu, ZENG Fan-gang, XIE Man-man, SHANG Wen-yu, WANG Shu-xian, SUN Qing. Study on Specific Carbon Isotope Fractionation of n-Alkanes during Column Chromatography Separation-Molecular Sieve Complexation Adsorption[J]. Rock and Mineral Analysis, 2021, 40(3): 349-357. doi: 10.15898/j.cnki.11-2131/td.202005030063
Citation: DONG Hao-wei, ZHAO Jia-yu, ZENG Fan-gang, XIE Man-man, SHANG Wen-yu, WANG Shu-xian, SUN Qing. Study on Specific Carbon Isotope Fractionation of n-Alkanes during Column Chromatography Separation-Molecular Sieve Complexation Adsorption[J]. Rock and Mineral Analysis, 2021, 40(3): 349-357. doi: 10.15898/j.cnki.11-2131/td.202005030063

Study on Specific Carbon Isotope Fractionation of n-Alkanes during Column Chromatography Separation-Molecular Sieve Complexation Adsorption

More Information
  • BACKGROUND

    Before analyzing the carbon isotopes of n-alkanes by gas chromatography-gas isotope mass spectrometry (GC-IRMS), it is necessary to pre-separate and enrich n-alkanes and isoparaffins in saturated hydrocarbon samples. Whether the carbon isotope fractionation of n-alkanes occurs is the key for the high-precision analysis of the carbon isotope ratio.

    OBJECTIVES

    To determine isotopic fractionation characteristics for n-alkanes during column chromatography and molecular sieve separation.

    METHODS

    Saturated hydrocarbon components were extracted with a 500mg/3mL SPE silica gel column using 2mL n-pentane. After separating by a 5Å molecular sieve and extracting by a mixture solvent of cyclohexane and n-pentane, n-alkanes were concentrated and analyzed by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS).

    RESULTS

    During column chromatographic separation, the carbon isotope ratio of most n-alkanes differed from -0.2‰ to 0.2‰. When n-alkanes was not completely complexed by 5Å molecular sieve, the uncomplexed alkane carbon isotope was about 0.7‰ heavier, and weak carbon isotope fractionation occured, but it did not affect the eluted n-alkanes carbon isotope ratio. Eluted with cyclohexane-n-pentane mixed solvent, the carbon isotope values before and after the elution differed from-0.2‰ to 0.5‰, and eluted in the same way for the second time, the difference between the eluted n-alkanes carbon isotope and simulate sample was between -0.3‰ and 0.2‰. Analyzing the carbon isotope ratios of n-alkanes with different recoveries (>20%), the difference between carbon isotopes of n-alkanes before and after pretreatment was within 0.3‰. It was found that when the recovery was as low as 20%, the carbon isotope ratios did not undergo significant fractionation.

    CONCLUSIONS

    The column chromatography-5Å molecular sieve adsorption and mixed solvent elution method is suitable for the analysis of carbon isotope ratios of normal alkanes, which yields a recovery greater than 20%.

  • 加载中
  • [1] 杨柳. 巴丹吉林沙漠塔布吉格徳湖2000年来的正构烷烃单体碳同位素组成及气候变化[D]. 北京: 中国地质大学(北京), 2020: 1-7.

    Google Scholar

    Yang L. Environmental significance of n-alkane monomer carbon isotopes in Tabujigede Lake, Badain Jaran Desert, Inner Mongolia since 2000[D]. Beijing: China University of Geosciences (Beijing), 2020: 1-7.

    Google Scholar

    [2] Castaneda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews, 2011, 30(21-22): 2851-2891.

    Google Scholar

    [3] Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J]. Geochimica et Cosmochimica Acta, 2004, 68(23): 4877-4889. doi: 10.1016/j.gca.2004.06.004

    CrossRef Google Scholar

    [4] Ficken K J, Swain D, Eglinton G. An n-alkane proxy for the sedimentary input of submerged floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7-8): 745-749. doi: 10.1016/S0146-6380(00)00081-4

    CrossRef Google Scholar

    [5] 凌媛. 青藏高原湖泊记录的典型时段古气候变化[D]. 武汉: 中国地质大学(武汉), 2017: 1-7.

    Google Scholar

    Lin Y. Paleoclimatic changes of typical periods recorded in lake sediments on the Tibetan Plateau[D]. Wuhan: China University of Geosciences (Wuhan), 2017: 1-7.

    Google Scholar

    [6] Wurster C M, Patterson W P, McFarlane D A, et al. Stable carbon and hydrogen isotopes from bat guano in the Grand Canyon, USA, reveal Younger Dryas and 8.2ka events[J]. Geology, 2008, 36(9): 683-686. doi: 10.1130/G24938A.1

    CrossRef Google Scholar

    [7] Hayes J M, Freeman K H, Popp B N, et al. Compound-specific isotopic analyses-A novel tool for reconstruction of ancient biogeochemical processes[J]. Organic Geochemistry, 1990, 16(4-6): 1115-1128. doi: 10.1016/0146-6380(90)90147-R

    CrossRef Google Scholar

    [8] Andersson R A, Kuhry P, Meyers P, et al. Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic[J]. Organic Geochemistry, 2011, 42(9): 1065-1075. doi: 10.1016/j.orggeochem.2011.06.020

    CrossRef Google Scholar

    [9] Bush R T, McInerney F A. Leaf wax n-alkane distributions in and across modern plants: Implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta, 2013, 117: 161-179. doi: 10.1016/j.gca.2013.04.016

    CrossRef Google Scholar

    [10] Bush R T, McInerney F A. Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA[J]. Organic Geochemistry, 2015, 79: 65-73. doi: 10.1016/j.orggeochem.2014.12.003

    CrossRef Google Scholar

    [11] Dorale J A, Wozniak L A, Bettis E A, et al. Isotopic evidence for Younger Dry as aridity in the North American Midcontinent[J]. Geology, 2010, 38(6): 519-522. doi: 10.1130/G30781.1

    CrossRef Google Scholar

    [12] Rommerskirchen F, Eglinton G, Dupont L, et al. A north to south transect of Holocene southeast Atlantic continental margin sediments: Relationship between aerosol transport and compound-specific δ13C land plant biomarker and pollen records[J]. Geochemistry, Geophysics, Geosystems, 2003, 4(12): 1101.

    Google Scholar

    [13] Ficken K J, Street F A, Perrott R A, et al. Glacial/interglacial variations in carbon cycling revealed by molecular and isotope stratigraphy of Lake Nkunga, Mt. Kenya, East Africa[J]. Organic Geochemistry, 1998, 29(5-7): 1701-1719. doi: 10.1016/S0146-6380(98)00109-0

    CrossRef Google Scholar

    [14] Gao L, Hou J, Toney J, et al. Mathematical modeling of the aquatic macrophyte inputs of mid-chainn-alkyl lipids to lake sediments: Implications for interpreting compound specific hydrogen isotopic records[J]. Geochimica et Cosmochimica Acta, 2011, 75(13): 3781-3791. doi: 10.1016/j.gca.2011.04.008

    CrossRef Google Scholar

    [15] Garcin Y, Schwab V F, Gleixner G, et al. Hydrogen isotope ratios of lacustrine sedimentary n-alkanes as proxies of tropical African hydrology: Insights from a calibration transect across Cameroon[J]. Geochimica et Cosmochimica Acta, 2012, 79: 106-126. doi: 10.1016/j.gca.2011.11.039

    CrossRef Google Scholar

    [16] Mügler I, Gleixner G, Günther F, et al. A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, central Tibet[J]. Journal of Paleolimnology, 2009, 43(4): 625-648.

    Google Scholar

    [17] Rao Z G, Zhu Z Y, Jia G D, et al. Compound specific delta D values of long chain n-alkanes derived from terrestrial higher plants are indicative of the delta D of meteoric waters: Evidence from surface soils in eastern China[J]. Organic Geochemistry, 2009, 40(8): 922-930. doi: 10.1016/j.orggeochem.2009.04.011

    CrossRef Google Scholar

    [18] Yamada K, Ishiwatari R. Carbon isotopic compositions of long-chain n-alkanes in the Japan Sea sediments: Implications for paleoenvironmental changes over the past 85kyr[J]. Organic Geochemistry, 1999, 30(5): 367-377. doi: 10.1016/S0146-6380(99)00012-1

    CrossRef Google Scholar

    [19] Sachse D, Billault I, Bowen G J, et al. Molecular paleohydrology: Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms[J]. Annual Review of Earth and Planetary Sciences, 2012, 40: 221-249. doi: 10.1146/annurev-earth-042711-105535

    CrossRef Google Scholar

    [20] Song M H, Duan D Y, Chen H, et al. Leaf δ13C reflects ecosystem patterns and responses of alpine plants to the environments on the Tibetan Plateau[J]. Ecography, 2008, 31(4): 499-508. doi: 10.1111/j.0906-7590.2008.05331.x

    CrossRef Google Scholar

    [21] Street J H, Anderson R S, Rosenbauer R J, et al. n-alkane evidence for the onset of wetter conditions in the Sierra Nevada, California (USA) at the Mid-Late Holocene transition, similar to 3.0ka[J]. Quaternary Research, 2013, 79(1): 14-23. doi: 10.1016/j.yqres.2012.09.004

    CrossRef Google Scholar

    [22] Stuiver M, Braziunas T F. Tree cellulose 13C/12C isotope ratios and climatic-change[J]. Nature, 1987, 328(6125): 58-60. doi: 10.1038/328058a0

    CrossRef Google Scholar

    [23] 林杰. 叶蜡烷烃单体同位素对青藏高原中-晚新生代古地形和古环境的约束[D]. 北京: 中国地质大学(北京), 2020: 2-5.

    Google Scholar

    Lin J. The Mid-Late Cenozoic paleotopography and paleoenvironment of Tibetan Plateau: Constraint from leaf wax compound-specific isotope[D]. Beijing: China University of Geosciences (Beijing), 2020: 2-5.

    Google Scholar

    [24] Rao Z G, Guo W K, Cao J T, et al. Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review[J]. Earth-Science Reviews, 2017, 165: 110-119. doi: 10.1016/j.earscirev.2016.12.007

    CrossRef Google Scholar

    [25] 饶志国, 贾国东, 朱照宇, 等. 中国东部表土总有机质碳同位素和长链正构烷烃碳同位素对比研究及其意义[J]. 科学通报, 2008, 53(17): 79-86.

    Google Scholar

    Rao Z G, Jia G D, Zhu Z Y, et al. A comparative study on the carbon isotopes of total organic matter and long-chain n-alkanes in the surface soil of eastern China and its significance[J]. Science Bulletin, 2008, 53(17): 79-86.

    Google Scholar

    [26] 王宁, 朱庆增, 谢曼曼, 等. 尿素络合法分离-气相色谱/同位素质谱法分析土壤和植物中低含量(ppm级)正构烷烃的碳同位素[J]. 岩矿测试, 2015, 34(4): 471-479.

    Google Scholar

    Wang N, Zhu Q Z, Xie M M, et al. An improved urea adduction method for analyzing carbon isotope of ppm level n-alkanes in soil and plant samples[J]. Rock and Mineral Analysis, 2015, 34(4): 471-479.

    Google Scholar

    [27] 陈莎莎, 朱新旭, 贾望鲁, 等. 用于单体氢同位素分析的混合溶剂洗脱5Å分子筛吸附正构烷烃的方法[J]. 岩矿测试, 2017, 36(4): 413-419.

    Google Scholar

    Chen S S, Zhu X X, Jia W L, et al. Elution of adsorbed n-alkanes by 5Å molecular sieve using solvent mixtures for compound-specific hydrogen isotopic analysis[J]. Rock and Mineral Analysis, 2017, 36(4): 413-419.

    Google Scholar

    [28] 张逐月, 刘美美, 谢曼曼, 等. 5Å分子筛吸附混合溶剂洗脱-气相色谱-同位素质谱分析土壤中正构烷烃单体碳同位素[J]. 岩矿测试, 2012, 31(1): 178-183. doi: 10.3969/j.issn.0254-5357.2012.01.025

    CrossRef Google Scholar

    Zhang Z Y, Liu M M, Xie M M, et al. Specific carbon isotopic analysis of n-alkanes in soils by gas chromatography-isotope ratio mass spectrometry with 5Å molecular sieve adsorption and mixed solvent elution[J]. Rock and Mineral Analysis, 2012, 31(1): 178-183. doi: 10.3969/j.issn.0254-5357.2012.01.025

    CrossRef Google Scholar

    [29] 杜丽, 李立武, 孟仟祥, 等. 饱和烃经5Å分子筛络合前后单体烃碳同位素分析对比研究[J]. 沉积学报, 2005, 23(4): 747-752. doi: 10.3969/j.issn.1000-0550.2005.04.027

    CrossRef Google Scholar

    Du L, Li L W, Meng Q X, et al. Comparison of carbon isotopic composition of the saturated hydrocarbons before and after complexation 5Å molecular sieve[J]. Acta Sedimentologica Sinica, 2005, 23(4): 747-752. doi: 10.3969/j.issn.1000-0550.2005.04.027

    CrossRef Google Scholar

    [30] 李钜源. 单分子烃碳同位素分析方法及影响因素探讨[J]. 地球学报, 2004, 25(2): 8-12.

    Google Scholar

    Li J Y. Carbon isotope analysis methods and influencing factors of single molecule hydrocarbon[J]. Journal of Earth Sciences, 2004, 25(2): 8-12.

    Google Scholar

    [31] 朱雷, 史权. 吸附法分离饱和烃组分在石油地球化学中的应用[J]. 石油大学学报, 1999, 23(2): 30-33.

    Google Scholar

    Zhu L, Shi Q. Separation of saturated hydrocarbons using adsorption method and its application in petroleum geochemistry[J]. Journal of the University of Petroleum, 1999, 23(2): 30-33.

    Google Scholar

    [32] Grice K, Audino M, Boreham C J, et al. Distributions and stable carbon isotopic compositions of biomarkers in torbanites from different palaeogeographical locations[J]. Organic Geochemistry, 2001, 32(10): 1195-1210. doi: 10.1016/S0146-6380(01)00087-0

    CrossRef Google Scholar

    [33] Grice K, Mesmay R, Glucina A, et al. An improved and rapid 5Å molecular sieve method for gas chromatography isotope ratio mass spectrometry of n-alkanes (C8-C30+)[J]. Organic Geochemistry, 2008, 39(3): 284-288. doi: 10.1016/j.orggeochem.2007.12.009

    CrossRef Google Scholar

    [34] Tolosa I, Ogrinc N. Utility of 5Å molecular sieves to mea-sure carbon isotope ratios in lipid biomarkers[J]. Journal of Chromatography A, 2007, 1165(1-2): 172-181. doi: 10.1016/j.chroma.2007.07.046

    CrossRef Google Scholar

    [35] Xu S P, Sun Y G. An improved method for the micro-separation of straight chain and branched/cyclic alkanes: Urea inclusion paper layer chromatography[J]. Organic Geochemistry, 2005, 36(9): 1334-1338.

    Google Scholar

    [36] 王汇彤, 魏彩云, 张水昌, 等. MOY分子筛对生物标志化合物的分离及其单体烃同位素测定研究[J]. 石油实验地质, 2010, 32(5): 513-516. doi: 10.3969/j.issn.1001-6112.2010.05.019

    CrossRef Google Scholar

    Wang H T, Wei C Y, Zhang S C, et al. The study on biomarkers separation and its CSIA by MOY molecular sieve[J]. Petroleum Geology & Experiment, 2010, 32(5): 513-516. doi: 10.3969/j.issn.1001-6112.2010.05.019

    CrossRef Google Scholar

    [37] Rach O, Hadeen X, Sachse D. An automated solid phase extraction procedure for lipid biomarker purification and stable isotope analysis[J]. Organic Geochemistry, 2020, 142: 1-12.

    Google Scholar

    [38] Kubiak A, Biesaga M. Solid phase-extraction procedure for the determination of amitraz degradation products in honey[J]. Food Additives and Contaminants, 2020, 37(11): 1-9.

    Google Scholar

    [39] 张东东, 刘玉兰, 马宇翔, 等. SPE净化-同位素稀释-GC-MS法检测食用油脂中16种多环芳烃[J]. 粮食与油脂, 2016, 26(1): 53-59.

    Google Scholar

    Zhang D D, Liu Y L, Ma Y X, et al. Determination of EPA 16 polycyclic aromatic hydrocarbons in edible oil samples by SPE purification-isotope dilution-gas chromatography-mass spectrometry[J]. Cereals & Oils, 2016, 26(1): 53-59.

    Google Scholar

    [40] Benbow T J, Frew R D, Hayman A R. Validation of a rapid and simple method for the preparation of aqueous organic compounds prior to compound specific isotope analysis[J]. Organic Geochemistry, 2008, 39(12): 1690-1702.

    Google Scholar

    [41] 杨东升, 刘猛, 庞丽萍, 等. H2O对空间站5Å分子筛CO2去除性能影响[J]. 北京航空航天大学学报, 2015, 41(8): 1485-1491.

    Google Scholar

    Yang D S, Liu M, Pang L P, et al. H2O impact on CO2 removal performance of 5Å molecular sieve in space station[J]. Joumal of Beijing University of Aeronautics and Astronautics, 2015, 41(8): 1485-1491.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(1)

Article Metrics

Article views(1111) PDF downloads(22) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint