Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 1
Article Contents

ZHOU Fan, LI Ming, CHAI Xin-na, HU Zhao-chu, LUO Tao, HU Sheng-hong. In-situ Non-destructive Determination of Major and Trace Elements in Large Size Ceramic Samples by Open Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 33-41. doi: 10.15898/j.cnki.11-2131/td.202005240075
Citation: ZHOU Fan, LI Ming, CHAI Xin-na, HU Zhao-chu, LUO Tao, HU Sheng-hong. In-situ Non-destructive Determination of Major and Trace Elements in Large Size Ceramic Samples by Open Laser Ablation Inductively Coupled Plasma-Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(1): 33-41. doi: 10.15898/j.cnki.11-2131/td.202005240075

In-situ Non-destructive Determination of Major and Trace Elements in Large Size Ceramic Samples by Open Laser Ablation Inductively Coupled Plasma-Mass Spectrometry

More Information
  • BACKGROUND

    Usually, laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) analysis is equipped with a closed ablation cell. It cannot be used for non-destructive analysis of the large-size samples which exceeds the size of the cell.

    OBJECTIVES

    To realize directly in situ non-destructive analysis of major and trace elements in the large-size samples.

    METHODS

    Based on the self-designed open sample collection port, combined with the gas exchange device, an open LA-ICP-MS analysis method was established. Taking the large-size ceramic disc sample as an example, samples can be directly determined for major and trace elements in an air environment without being broken.

    RESULTS

    Analyte aerosols produced by laser ablation were collected and sucked by open sample collector. The air in the aerosols was replaced via transfer tube by high purity argon in a gas exchange device, the analyte aerosols were then transferred into ICP-MS for detection. After non-destructive analyses by this method, large-size ceramic samples were broken and analyzed by traditional LA-ICP-MS. Relative deviations of most of 51 elements detected by the two methods were less than 10%. Only part of elements (such as P, Be, Sc, Y, La, Sm, Eu, Dy, Hf, W, etc.) had relative deviations higher than 20%, because of the extremely low contents.

    CONCLUSIONS

    The open LA-ICP-MS method is suitable for in situ non-destructive determination of major and trace elements in the large-size samples.

  • 加载中
  • [1] Detlef G, Hattendorf B. Solid sample analysis using laser ablation inductively coupled mass spectrometry[J]. Trends in Analytical Chemistry, 2005, 24(3): 255-265. doi: 10.1016/j.trac.2004.11.017

    CrossRef Google Scholar

    [2] Sylvester P J, Jackson S E. A brief history of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Elements, 2016, 12(5): 307-310. doi: 10.2113/gselements.12.5.307

    CrossRef Google Scholar

    [3] Liu Y S, Hu Z C, Li M, et al. Applications of LA-ICP-MS in the elemental analyses of geological samples[J]. Chinese Science Bulletin, 2013, 58(32): 3863-3878. doi: 10.1007/s11434-013-5901-4

    CrossRef Google Scholar

    [4] 杨文武, 史光宇, 商琦, 等. 飞秒激光剥蚀电感耦合等离子体质谱在地球科学中的应用进展[J]. 光谱学与光谱分析, 2017, 37(7): 208-214.

    Google Scholar

    Yang W W, Shi G Y, Shang Q, et al. Application of femtosecond (fs) laser ablation-inductively coupled plasma-mass spectrometry in Earth sciences[J]. Apectroscopy and Spectral Analysis, 2017, 37(7): 208-214.

    Google Scholar

    [5] 吴石头, 许春雪, Klaus S, 等. 193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J]. 岩矿测试, 2017, 36(5): 451-459.

    Google Scholar

    Wu S T, Xu C X, Klaus S, et al. Study on ablation behaviors and ablation rates of a 193nm ArF excimer laser system for selected substrates in LA-ICP-MS analysis[J]. Rock and Mineral Analysis, 2017, 36(5): 451-459.

    Google Scholar

    [6] 王辉, 汪方跃, 关炳庭, 等. 激光能量密度对LA-ICP-MS分析数据质量的影响研究[J]. 岩矿测试, 2019, 38(6): 609-619.

    Google Scholar

    Wang H, Wang F Y, Guan B T, et al. Effect of laser energy density on data quality during LA-ICP-MS measurement[J]. Rock and Mineral Analysis, 2019, 38(6): 609-619.

    Google Scholar

    [7] Zhang W, Hu Z C, Liu Y S, et al. In situ calcium isotopic ratio determination in calcium carbonate materials and calcium phosphate materials using laser ablation-multiple collector-inductively coupled plasma mass spectrometry[J]. Chemical Geology, 2019, 522: 16-25. doi: 10.1016/j.chemgeo.2019.04.027

    CrossRef Google Scholar

    [8] 宗克清, 陈金勇, 胡兆初, 等. 铀矿fs-LA-ICP-MS原位微区U-Pb定年[J]. 中国科学(地球科学), 2015, 45(9): 1304-1315.

    Google Scholar

    Zong K Q, Chen J Y, Hu Z C, et al. In-situ U-Pb dating of uraninite by fs-LA-ICP-MS[J]. Science China (Earth Sciences), 2015, 45(9): 1304-1315.

    Google Scholar

    [9] Liao X H, Luo T, Zhang S H, et al. Direct and rapid multi-element analysis of wine samples in their natural liquid state by laser ablation ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2020, 35: 1071-1079. doi: 10.1039/C9JA00404A

    CrossRef Google Scholar

    [10] Pozebon D, Scheffler G L, Dressler V L, et al. Review of the applications of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to the analysis of biological samples[J]. Journal of Analytical Atomic Spectrometry, 2014, 29(12): 2204-2228. doi: 10.1039/C4JA00250D

    CrossRef Google Scholar

    [11] Limbeck A, Bonta M, Nischkauer W. Improvements in the direct analysis of advanced materials using ICP-based measurement techniques[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(2): 212-232. doi: 10.1039/C6JA00335D

    CrossRef Google Scholar

    [12] Orellana F A, Gálvez C G, Roldán M T, et al. Applications of laser-ablation inductively-coupled plasma-mass spectrometry in chemical analysis of forensic evidence[J]. Trends in Analytical Chemistry, 2013, 42: 1-34. doi: 10.1016/j.trac.2012.09.015

    CrossRef Google Scholar

    [13] Mueller W, Fietzke J. The role of LA-ICP-MS in palaeoclimate research[J]. Elements, 2016, 12(5): 329-334. doi: 10.2113/gselements.12.5.329

    CrossRef Google Scholar

    [14] Degryse P, Vanhaecke F. Status and prospects for quasi-non-destructive analysis of ancient artefacts via LA-ICP-MS[J]. Elements, 2016, 12(5): 341-346. doi: 10.2113/gselements.12.5.341

    CrossRef Google Scholar

    [15] Bi M, Ruiz A M, Gornushkin I, et al. Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Applied Surface Science, 2000, 158(3-4): 197-204. doi: 10.1016/S0169-4332(00)00027-1

    CrossRef Google Scholar

    [16] Feldmann I, Koehler C U, Roos P H, et al. Optimisation of a laser ablation cell for detection of hetero-elements in proteins blotted onto membranes by use of inductively coupled plasma mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2006, 21(10): 1006-1015. doi: 10.1039/b606773e

    CrossRef Google Scholar

    [17] Liu Y S, Hu Z C, Yuan H L, et al. Volume-optional and low-memory (VOLM) chamber for laser ablation-ICP-MS: Application to fiber analyses[J]. Journal of Analytical Atomic Spectrometry, 2007, 22(5): 582-585. doi: 10.1039/b701718a

    CrossRef Google Scholar

    [18] Li M, Hu Z C, Gao S, et al. Direct quantitative determin-ations of trace elements in fine-grained whole rocks by laser ablation inductively coupled plasma mass spectrometry[J]. Geostandards and Geoanalytical Research, 2011, 35: 7-22. doi: 10.1111/j.1751-908X.2010.00028.x

    CrossRef Google Scholar

    [19] Devos W, Moor C, Lienemann P. Determination of impurities in antique silver objects for authentication by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(4): 621-626. doi: 10.1039/a900073i

    CrossRef Google Scholar

    [20] Asogan D, Sharp B L, O'Connor C J P, et al. An open, non-contact cell for laser ablation-inductively coupled plasma-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2009, 24(7): 917-923. doi: 10.1039/b904850b

    CrossRef Google Scholar

    [21] Asogan D, Sharp B L, O'Connor C J P, et al. Numerical simulations of gas flows through an open, non-contact cell for LA-ICP-MS[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(3): 631-634. doi: 10.1039/C0JA00166J

    CrossRef Google Scholar

    [22] Wagner B, Wojciech J. Open ablation cell for LA-ICP-MS investigations of historic objects[J]. Journal of Analytical Atomic Spectrometry, 2011, 26(10): 2058-2063. doi: 10.1039/c1ja10137d

    CrossRef Google Scholar

    [23] Glaus R, Koch J, Günther D. Portable laser ablation sampling device for elemental fingerprinting of objects outside the laboratory with laser ablation inductively coupled plasma mass spectrometry[J]. Analytical Chemistry, 2012, 84(12): 5358-5364. doi: 10.1021/ac3008626

    CrossRef Google Scholar

    [24] Kantor T, Kiraly E, Bertalan E, et al. Gas-flow optimization studies on brass samples using closed and open types of laser ablation cells in inductively coupled plasma mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2012, 68: 46-57. doi: 10.1016/j.sab.2012.01.012

    CrossRef Google Scholar

    [25] Nishiguchi K, Utani K, Fujimori E. Real-time multielement monitoring of airborne particulate matter using ICP-MS instrument equipped with gas converter apparatus[J]. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1125-1129. doi: 10.1039/b802302f

    CrossRef Google Scholar

    [26] Ohata M, Nishiguchi K. Direct analysis of gaseous mercury in ambient air by gas to particle conversion-gas exchange ICPMS[J]. Journal of Analytical Atomic Spectrometry, 2017, 32(4): 717-722. doi: 10.1039/C6JA00292G

    CrossRef Google Scholar

    [27] Ohata M, Nishiguchi K. Research progress on gas to particle conversion-gas exchange ICP-MS for direct analysis of ultra-trace metallic compound gas[J]. Analytical Sciences, 2018, 34(6): 657-666. doi: 10.2116/analsci.18SBR01

    CrossRef Google Scholar

    [28] Kovacs R, Nishiguchi K, Utani K, et al. Development of direct atmospheric sampling for laser ablation-inductively coupled plasma-mass spectrometry[J]. Journal of Analytical Atomic Spectrometry, 2010, 25(2): 142-147. doi: 10.1039/b924425e

    CrossRef Google Scholar

    [29] Tabersky D, Nishiguchi K, Utani K, et al. Aerosol entrain-ment and a large-capacity gas exchange device (Q-GED) for laser ablation inductively coupled plasma mass spectrometry in atmospheric pressure air[J]. Journal of Analytical Atomic Spectrometry, 2013, 28(6): 831-842. doi: 10.1039/c3ja50044f

    CrossRef Google Scholar

    [30] Wu C C, Burger M, Günther D, et al. Highly-sensitive open-cell LA-ICPMS approaches for the quantification of rare earth elements in natural carbonates at parts-per-billion levels[J]. Analytica Chimica Acta, 2018, 1018: 54-61. doi: 10.1016/j.aca.2018.02.021

    CrossRef Google Scholar

    [31] Liu Y S, Hu Z C, Gao S, et al. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology, 2008, 257: 34-43. doi: 10.1016/j.chemgeo.2008.08.004

    CrossRef Google Scholar

    [32] Liu Y S, Gao S, Hu Z C, et al. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons of mantle xenoliths[J]. Journal of Petrology, 2010, 51: 537-571. doi: 10.1093/petrology/egp082

    CrossRef Google Scholar

    [33] 孟郁苗, 黄小文, 高剑峰, 等. 无内标-多外标校正激光剥蚀等离子体质谱法测定磁铁矿微量元素组成[J]. 岩矿测试, 2016, 35(6): 585-594.

    Google Scholar

    Meng Y M, Huang X W, Gao J F, et al. Determination of trace elements in magnetite by laser ablation-inductively coupled plasma-mass spectrometry using multiple external standards without an internal standard calibration[J]. Rock and Mineral Analysis, 2016, 35(6): 585-594.

    Google Scholar

    [34] Eggins S M, Kinsley L P J, Shelley J M G. Deposition and element fractionation processes during atmospheric pressure laser sampling for analysis by ICP-MS[J]. Applied Surface Science, 1998, 127-129: 278-286. doi: 10.1016/S0169-4332(97)00643-0

    CrossRef Google Scholar

    [35] Günther D, Heinrich C A. Enhanced sensitivity in laser ablation-ICP mass spectrometry using helium-argon mixtures as aerosol carrier[J]. Journal of Analytical Atomic Spectrometry, 1999, 14(9): 1363-1368. doi: 10.1039/A901648A

    CrossRef Google Scholar

    [36] Horn I, Günther D. The influence of ablation carrier gasses Ar, He and Ne on the particle size distribution and transport efficiencies of laser ablation-induced aerosols: Implications for LA-ICP-MS[J]. Applied Surface Science, 2003, 207(1-4): 144-157. doi: 10.1016/S0169-4332(02)01324-7

    CrossRef Google Scholar

    [37] Luo T, Hu Z C, Zhang W, et al. Reassessment of the influence of carrier gases he and ar on signal intensities in 193nm excimer LA-ICP-MS analysis[J]. Journal of Analytical Atomic Spectrometry, 2018, 33(10): 1655-1663. doi: 10.1039/C8JA00163D

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2402) PDF downloads(124) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint