Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 1
Article Contents

FANG Biao, YAN Xue-jun, SUN Qing, WU Jing-yi, LI Shu-hua, YAN Jun. Study on the Unique Mineral Microstructure of Seawater Cultured Gray Akoya Pearl by SEM, FTIR and Reflection Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 42-49. doi: 10.15898/j.cnki.11-2131/td.201908200124
Citation: FANG Biao, YAN Xue-jun, SUN Qing, WU Jing-yi, LI Shu-hua, YAN Jun. Study on the Unique Mineral Microstructure of Seawater Cultured Gray Akoya Pearl by SEM, FTIR and Reflection Spectroscopy[J]. Rock and Mineral Analysis, 2021, 40(1): 42-49. doi: 10.15898/j.cnki.11-2131/td.201908200124

Study on the Unique Mineral Microstructure of Seawater Cultured Gray Akoya Pearl by SEM, FTIR and Reflection Spectroscopy

More Information
  • BACKGROUND

    Seawater cultured gray Akoya pearls have become popular as jewelry in the recent years. In the early stage, some research focused mainly on investigating the cultured environment of seawater or freshwater pearls, element occurrence characteristics of each structural unit, irradiation treatment and the identification method of irradiated pearls.

    OBJECTIVES

    To further study the gemological characteristics and fine microstructure of a type of gray pearl with a white nucleus.

    METHODS

    Ultraviolet-visible reflection spectrum, micro-infrared spectrum and scanning electron microscope methods were used.

    RESULTS

    A brown transition layer of organic matter between the nacre and nucleus was discovered, which measures several microns in thickness. A layer with no fixed morphology composed of calcite and vaterite in the nacre near the brown transition layer was also discovered. Quasi plates of aragonite exist in the nacre near the surface of the pearl. The morphology of these aragonite tablets in the middle area of the nacre was more regular, the thickness of individual aragonite plate gradually decreased in the direction from the nucleus to the surface of the pearls. The reflectance spectrum of the entire pearl surface was consistent with the spectral characteristics of the outer single nacre. The brown transition layer had no direct effect on the UV-Vis reflectance spectrum of the entire pearl. Therefore, whether or not the brown transition layer affected the gray appearance of the pearl needs further discussion.

    CONCLUSIONS

    The research work has important guiding significance for the coloring mechanism of gray Akoya pearls and the identification of the formation attributes. It can also aid in the recognition of the fine structure and mineralization characteristics of pearls with a thin layer of nacre of 0.3mm to 0.6mm.

  • 加载中
  • [1] 张蓓莉. 系统宝石学[M]. 北京: 地质出版社, 1997.

    Google Scholar

    Zhang B L. Systematic gemmology[M]. Beijing: Geological Publishing House, 1997.

    Google Scholar

    [2] Kripa V, Mohamed K S, Appukuttan K K, et al. Production of Akoya pearls from the southwest coast of India[J]. Aquaculture, 2007, 262(2): 347-354.

    Google Scholar

    [3] Otter L M, Agbaje O B A, Huong L T, et al. Akoya cul-tured pearl farming in eastern Australia[J]. Gems & Gemology, 2017, 53(4): 423-437.

    Google Scholar

    [4] Tsujii T. The change of pearl colors by the irradiation with γ-ray or neutron ray[J]. Journal of Radiation Research, 1963, 4(2-4): 120-125. doi: 10.1269/jrr.4.120

    CrossRef Google Scholar

    [5] 李立平, 陈钟惠. 养殖珍珠的辐照处理[J]. 宝石与宝石学, 2002, 4(3): 16-21.

    Google Scholar

    Li L P, Chen Z H. Irradiation treatment of cultured pearls[J]. Journal of Gems and Gemmology, 2002, 4(3): 16-21.

    Google Scholar

    [6] Kim H Y, Hanifehpour Y, Narayan A, et al. Structural studies and optical properties of pearl nucleus irradiated by γ-ray[J]. Radiation Effects and Defects in Solids, 2013, 168(9): 696-704. doi: 10.1080/10420150.2012.761997

    CrossRef Google Scholar

    [7] Kim Y, Choi H, Lee B, et al.Identification of irradiated south sea cultured pearls using electron spin resonance spectroscopy[J].Gems & Gemology, 48(4): 292-299.

    Google Scholar

    [8] Choi H, Lee B, Kim Y. Detection of gamma irradiated South Sea cultured pearls[J]. Journal of the Korean Crystal Growth and Crystal Technology, 2012, 22(1): 36-41. doi: 10.6111/JKCGCT.2012.22.1.036

    CrossRef Google Scholar

    [9] 宋彦军, 张义丞, 武云龙, 等. 银灰色马氏贝海水珍珠的光谱学特征与颜色成因[J]. 矿物学报, 2017, 37(6): 712-716.

    Google Scholar

    Song Y J, Zhang Y C, Wu Y L, et al. Spectra characteristics and coloration mechanism of silver-gray color seawater cultured pearls produced by Pinctada Martensii[J]. Acta Mineralogica Sinica, 2017, 37(6): 712-716.

    Google Scholar

    [10] 邵惠萍, 严雪俊, 严俊, 等. 应用傅里叶变换红外光谱与紫外可见吸收光谱鉴别两类海水养殖灰色珍珠[J]. 岩矿测试, 2019, 38(5): 489-496.

    Google Scholar

    Shao H P, Yan X J, Yan J, et al. Identification of two kinds of seawater cultured gray pearls by Fourier transform infrared spectroscopy and ultraviolet-visible absorption spectroscopy[J]. Rock and Mineral Analysis, 2019, 38(5): 489-496.

    Google Scholar

    [11] Ma H Y, Su A A, Zhang B L, et al. Vaterite or aragonite observed in the prismatic layer of freshwater-cultured pearls from South China[J]. Progress in Natural Science, 2009, 19: 817-820. doi: 10.1016/j.pnsc.2008.11.005

    CrossRef Google Scholar

    [12] Alberto P H, Cuif J P, Dauphin Y, et al. Crystallography of calcite in pearls[J]. European Journal of Mineralogy, 2014, 26(4): 507-516. doi: 10.1127/0935-1221/2014/0026-2390

    CrossRef Google Scholar

    [13] Ma H Y, Li R K, Yang L X, et al. A modified integrated model of the internal structure of Chinese cultured pearls[J]. Journal of Wuhan University of Technology (Material Science), 2011, 26(3): 510-514. doi: 10.1007/s11595-011-0258-5

    CrossRef Google Scholar

    [14] Murr L E, Ramirez D A. The microstructure of the cul-tured freshwater pearl[J]. Journal of the Minerals, Metals & Materials Society, 2012, 64(4): 469-474. doi: 10.1007/s11837-012-0297-1

    CrossRef Google Scholar

    [15] Satitkune S, Monarumit N, Boonmee C, et al. Combina-tion of FTIR and SEM for identifying freshwater-cultured pearls from different quality[J]. Optikai Spektroskopiya, 2016, 120(3): 500-504. doi: 10.1134/S0030400X16030231

    CrossRef Google Scholar

    [16] Zuo S C, Wei Y G. Microsturcture observation and mechanical behavior modeling for limnetic nacre[J]. Acta Mechanica Sinica, 2008, 24(1): 83-89. doi: 10.1007/s10409-007-0125-y

    CrossRef Google Scholar

    [17] 闻辂. 矿物红外光谱[M]. 重庆: 重庆大学出版社, 1988.

    Google Scholar

    Wen L. Mineral infrared spectroscopy[M]. Chongqing: Chongqing University Press, 1988.

    Google Scholar

    [18] 张刚生, 李浩璇. 生物成因文石与无机成因文石的FTIR光谱区别[J]. 矿物岩石, 2006, 26(1): 1-4.

    Google Scholar

    Zhang G S, Li H X. The FTIR spectra difference between biogenic and abiogenic aragonites[J]. Journal of Mineralogy and Petrology, 2006, 26(1): 1-4.

    Google Scholar

    [19] Pokroy B, Fieramosca J S, von Dreele R B, et al. Atomic structure of biogenic aragonite[J]. Chemistry Materials, 2007, 19(13): 3244-3251. doi: 10.1021/cm070187u

    CrossRef Google Scholar

    [20] 张刚生, 丁世磊, 贾太轩, 等. 珍珠及贝壳珍珠层文石的异常红外光谱特征[J]. 宝石和宝石学杂志, 2005, 7(3): 7-9.

    Google Scholar

    Zhang G S, Ding S L, Jia T S, et al. Unusual characteristics of FTIR spectra aragonites from nacreous layers of pearls and bivalve shells[J]. Journal of Gems and Gemmology, 2005, 7(3): 7-9.

    Google Scholar

    [21] 丁世磊, 张刚生. 天然文石质陶瓷三角帆蚌贝壳的FTIR光谱研究[J]. 光谱学与光谱分析, 2006, 26(12): 2200-2202.

    Google Scholar

    Ding S L, Zhang G S. FTIR spectroscopic study on natural aragonite ceramics bivalve shells of Hyriopsis cumingii[J]. Spectroscopy and Spectral Analysis, 2006, 26(12): 2200-2202.

    Google Scholar

    [22] Elen S. Update on the identification of treated "Golden" South Sea cultured pearls[J]. Gems & Gemology, 2002, 38(2): 156-159.

    Google Scholar

    [23] 史凌云, 郭守国, 王以群. 黑色海水珍珠与人工处理黑色珍珠的光谱学特征研究[J]. 激光与光电子学报, 2012, 49(6): 063002-1-063002-4.

    Google Scholar

    Shi L Y, Guo S G, Wang Y Q. Study on spectral characteristics of black saltwater pearls and treated black pearls[J]. Laser & Optoelectronics Progress, 2012, 49(6): 063002-1-063002-4.

    Google Scholar

    [24] 亓利剑, 黄艺兰, 曾春光, 等. 各类金色海水珍珠的呈色属性及UV-Vis的反射光谱[J]. 宝石与宝石学, 2008, 10(4): 1-8.

    Google Scholar

    Qi L J, Huang Y L, Zeng C G. Colouration attributes and UV-Vis reflection spectra of various golden seawater cultured pearls[J]. Journal of Gems and Gemmology, 2008, 10(4): 1-8.

    Google Scholar

    [25] 郭倩, 徐志. 天然金珍珠和染色金珍珠的致色因素和鉴定分析方法研究进展[J]. 岩矿测试, 2015, 34(5): 512-519.

    Google Scholar

    Guo Q, Xu Z. Coloring factors of natural and dyed golden pearls and research progress on their identification methods[J]. Rock and Mineral Analysis, 2015, 34(5): 512-519.

    Google Scholar

    [26] 陈育, 郭守国, 史凌云. 光谱学在金黄色海水珍珠鉴定中的应用[J]. 光学学报, 2009, 29(6): 1706-1709.

    Google Scholar

    Chen Y, Guo S G, Shi L Y. Application of spectroscopy in identification of golden saltwater pearl[J]. Acta Optica Sinica, 2009, 29(6): 1706-1709.

    Google Scholar

    [27] Wang W Y, Scarratt K, Hyatt A, et al. Identification of "Chocolate Pearls" treated by ballerina pearl Co[J]. Gems & Gemology, 2006, 42(4): 222-235.

    Google Scholar

    [28] Yan J, Zhang J, Tao J B, et al. Origin of the common UV absorption feature in cultured pearls and shells[J]. Journal of Materials Science, 2017, 52(14): 8362-8369. doi: 10.1007/s10853-017-1111-9

    CrossRef Google Scholar

    [29] Agatonovic K S, Morton D W. The use of UV-visible re-flectance spectroscopy as an objective tool to evaluate pearl quality[J]. Marine Drugs, 2012, 10(7): 1459-1475.

    Google Scholar

    [30] 严雪俊, 严俊, 方飚, 等. 钻石的紫外-可见-近红外光谱与光致发光光谱温敏特征及其鉴定指示意义[J]. 光学学报, 2019, 39(9): 0930005-1-0930005-8.

    Google Scholar

    Yan X J, Yan J, Fang B, et al. Temperature sensitivity of UV-visible-near infrared and photoluminescence spectra of diamond and its significance for identification[J]. Acta Optica Sinica, 2019, 39(9): 0930005-1-0930005-8.

    Google Scholar

    [31] Wang W Y, Ulrika F S, Johansson D H, et al. CVD syn-thetic diamonds from gemesis corp[J]. Gems & Gemology, 2012, 48(2): 80-97.

    Google Scholar

    [32] Shigley J E, Breeding C M. Optical defects in diamond: A quick reference chart[J]. Gems & Gemology, 2013, 49(2): 107-111.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Article Metrics

Article views(2773) PDF downloads(91) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint