Citation: | ZHANG Ran, YE Li-juan, DANG Fei-peng, XIAO Zhi-bin, BI Jun-hui, ZHOU Jing, GUO Hu, XU Ya-wen, GENG Jian-zhen, ZHOU Hong-ying. Application of Automatic Mineral Analysis Technology to Identify Minerals and Occurrences of Elements in Sandstone-type Uranium Deposits in the Ordos Basin[J]. Rock and Mineral Analysis, 2021, 40(1): 61-73. doi: 10.15898/j.cnki.11-2131/td.202005130071 |
The Ordos Basin is one of the most important areas in China because it hosts lots of sandstone-type uranium deposits and a variety of other energy and mineral resources. The occurrence of uranium minerals is of great significance to the genetic understanding and prospecting of sandstone-type uranium deposits. However, the complex mineral composition, fine grain size, and various types and occurrences of uranium minerals make the initial identification stage of the study difficult. Currently, radiograph and electron probe microanalysis (EMPA) have played an important role in the identification of uranium minerals. Radiography can be used to obtain the position, occurrence and radioactive form of all uranium minerals in the light film at one time, but the mineral type cannot be identified. Moreover, it is a lengthy process and must be performed in darkness. Electron probe can be used to obtain the backscattered image of the uranium mineral. However, it takes time and effort to find uranium minerals with small content and small particle size in thin slices at high magnification, and it is impossible to quickly determine the types of associated minerals in BSE images.
To find a more rapid and accurate method for identifying uranium minerals.
The automatic mineral analysis system (AMICS), scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used to identify minerals from sandstone-type uranium deposits in the north, south, and west margins of the Ordos Basin.
The minerals in the study were identified as coffinite, pitchblende, uraninite and uranophane. Pyrite and titanium oxide were closely related to uranium minerals, and other associated minerals were identified as quartz, rutile, feldspar, mica and kaolinite.
AMICS-SEM-EDS in situ analysis technology proves to be a reliable method for the rapid identification of uranium minerals, associated minerals, and their occurrences.
[1] | 邢秀娟, 柳益群, 樊爱萍. 鄂尔多斯盆地店头地区砂岩型铀矿成因初步探讨[J]. 中国地质, 2006, 33(3): 591-597. Xing X J, Liu Y Q, Fan A P. Genesis of sandstone-type uranium deposits: A case study in the Diantou Area of the Ordos Basin[J]. Geology in China, 2006, 33(3): 591-597. |
[2] | 吴仁贵, 祝民强, 余达淦, 等. 沉积体系分析与底河道型砂岩铀矿成矿条件讨论: 以鄂尔多斯中生代盆地北部东胜地区为例[J]. 矿床地质, 2002, 21(A1): 878-880. Wu R G, Zhu M Q, Yu D G, et al. Analyses of depositional system and studies on metallogenic condition of basal-channel sandstone uranium deposit[J]. Mineral Deposits, 2002, 21(A1): 878-880. |
[3] | 陈路路, 冯晓曦, 司马献章, 等. 鄂尔多斯盆地纳岭沟地区铀矿物赋存形式研究及其地质意义[J]. 地质与勘探, 2017, 53(4): 632-642. Chen L L, Feng X X, Sima X Z, et al. Occurrence forms of the uranium minerals in the Nalinggou Area of the Ordos Basin and geological implications[J]. Geology and Exploration, 2017, 53(4): 632-642. |
[4] | 李泽明, 李占春, 张振强, 等. 河北青龙县四三三铀矿田围岩蚀变岩石学特征研究[J]. 东华理工大学学报(自然科学版), 2020, 43(1): 48-54. Li Z M, Li Z C, Zhang Z Q, et al. Petrological features of rock alternation in No. 433 uranium orefield in Qinglong County of Hebei Province[J]. Journal of East China University of Technology, 2020, 43(1): 48-54. |
[5] | 高飞, 庞雅庆, 赵琳, 等. 诸广长江地区花岗岩型铀矿铀矿物赋存状态研究[J]. 铀矿地质, 2015, 31(A1): 330-335. Gao F, Pang Y Q, Zhao L, et al. Study on occurrence of uranium mineral in Changjiang granite-type uranium deposits of Zhuguang[J]. Uranium Geology, 2015, 31(A1): 330-335. |
[6] | 温利刚, 曾普胜, 詹秀春, 等. 矿物表征自动定量分析系统(AMICS)技术在稀土稀有矿物鉴定中的应用[J]. 岩矿测试, 2018, 37(2): 121-129. Wen L G, Zeng P S, Zhan X C, et al. Application of the automated mineral identification and characterization system (AMICS) in the identification of rare earth and rare minerals[J]. Rock and Mineral Analysis, 2018, 37(2): 121-129. |
[7] | 方明山, 王明燕. AMICS在铜矿伴生金银综合回收中的应用[J]. 矿冶, 2018(3): 104-108. Fang M S, Wang M Y. Application of AMICS in comprehensive recovery of associated gold and silver in a copper ore[J]. Mining & Metallurgy, 2018(3): 104-108. |
[8] | 李波, 梁冬云, 张莉莉, 等. 自动矿物分析系统的统计误差分析[J]. 矿冶, 2018, 27(4): 120-123. Li B, Liang D Y, Zhang L L, et al. The statistical deviation analysis of automatic process mineralogy analysis system[J]. Mining & Metallurgy, 2018, 27(4): 120-123. |
[9] | 王明燕, 肖仪武, 祁小军. 刚果(金)某氧化铜钴矿工艺矿物学特性及对浸出工艺的影响[J]. 矿产保护与利用, 2020(1): 118-123. Wang M Y, Xiao Y W, Qi X J. Process mineralogy and its influence on metallurgy technology of a copper-cobalt oxidized ore in Congo (DRC)[J]. Conservation and Utilization of Mineral Resources, 2020(1): 118-123. |
[10] | 狄永强. 试论鄂尔多斯北部中新生代盆地砂岩型铀矿找矿前景[J]. 铀矿地质, 2001, 18(6): 340-347. Di Y Q. Preliminary discussion on prospecting potential for sandstone-type uranium deposits in Meso-Cenozoic basins, northern Ordos[J]. Uranium Geology, 2001, 18(6): 340-347. |
[11] | Jin R S, Miao P S, Sima X Z, et al. Structure styles of mesozoic-cenozoic U-bearing rock series in northern China[J]. Acta Geologica Sinica (English Edition), 2016, 90(6): 2104-2116. doi: 10.1111/1755-6724.13025 |
[12] | 杨晓勇, 罗贤冬, 凌明星, 等. 鄂尔多斯盆地砂岩型铀矿床地球化学特征及其地质意义[J]. 地质论评, 2008, 54(4): 539-549. Yang X Y, Luo X D, Ling M X, et al. Geochemical features of sandstone-type uranium deposits in the Ordos Basin and their geological significances[J]. Geological Review, 2008, 54(4): 539-549. |
[13] | 苗培森, 李建国, 汤超, 等. 中国北方中新生代盆地深部砂岩铀矿成矿条件与找矿方向[J]. 地质通报, 2017, 36(10): 1830-1840. Miao P S, Li J G, Tang C, et al. Metallogenic condition and prospecting orientation for deep sandstone-hosted uranium deposits in Mesozoic-Cenozoic basins of North China[J]. Geological Bulletin of China, 2017, 36(10): 1830-1840. |
[14] | 杨晓勇, 凌明星, 赖小东. 鄂尔多斯盆地东胜地区地浸砂岩型铀矿成矿模型[J]. 地学前缘, 2009, 16(2): 239-249. Yang X Y, Ling M X, Lai X D. Metallogenic model of the Dongsheng in-situ leaching sandstone-type uranium deposit in the Ordos Basin[J]. Earth Science Frontiers, 2009, 16(2): 239-249. |
[15] | Wang Z T, Zhou H R, Wang X L, et al. Characteristics of the crystalline basement beneath the Ordos Basin: Constraint from aeromagnetic data[J]. Geoscience Frontiers, 2015, 6: 465-475. doi: 10.1016/j.gsf.2014.02.004 |
[16] | Yang M H, Li L, Zhou J, et al. Segmentation and inversion of the Hangjinqi fault zone, the northern Ordos Basin (North China)[J]. Journal of Asian Earth Sciences, 2013, 70(71): 64-78. |
[17] | Cai Y Q, Zhang J D, Li Z Y, et al. Outline of uranium resources characteristics and metallogenetic regularity in China[J]. Acta Geologica Sinica(English Edition), 2015, 89(3): 918-937. doi: 10.1111/1755-6724.12490 |
[18] | Bonnetti C, Cuney M, Bourlange S, et al. Primary uranium sources for sedimentary-hosted uranium deposits in NE China: Insight from basement igneous rocks of the Erlian Basin[J]. Mineralium Deposita, 2017, 52(3): 297-315. doi: 10.1007/s00126-016-0661-0 |
[19] | 刘晓雪, 汤超, 司马献章, 等. 鄂尔多斯盆地东北部砂岩型铀矿常量元素地球化学特征及地质意义[J]. 地质调查与研究, 2016, 39(3): 169-176. Liu X X, Tang C, Sima X Z, et al. Major elements geochemical characteristics of sandstone-type uranium deposit in north-east Ordos Basin and its geological implactions[J]. Geological Survey and Research, 2016, 39(3): 169-176. |
[20] | Zhang T F, Sun L X, Zhang Y, et al. Geochamical characteristics of the Jurassic Yan'an and Zhiluo Formations in the northern Margin of Ordos Basin and their paleoenvironmental implications[J]. Acta Geologica Sinica, 2016, 90(12): 3454-3472. |
[21] | Gallegos T J, Campbell K M, Zielinski R A. Persistent U(Ⅳ) and U(Ⅵ) following in-situ recovery (ISR) mining of a sandstone uranium deposit, Wyoming, USA[J]. Applied Geochemistry, 2015, 63: 222-234. doi: 10.1016/j.apgeochem.2015.08.017 |
[22] | 刘波, 时志强, 彭云彪, 等. 中国北方兴蒙地区叠合盆地砂岩型铀成矿特征及勘查方法综述[J]. 地质与勘探, 2019, 55(6): 1343-1355. Liu B, Shi Z Q, Peng Y B, et al. Review on metallogenic characteristics and exploration methods of sandstone-type uranium deposits in superimposed basins in the Xingmeng Area, northern China[J]. Geology and Exploration, 2019, 55(6): 1343-1355. |
[23] | Strakhovenko V D, Gas'kova O L. Thermodynamic model of formation of carbonates and uranium mineral phases in lakes Namshi-Nur and Tsagan-Tyrm (Cisbaikalia)[J]. Russia Geology and Geophysics, 2018, 59(4): 374-385. doi: 10.1016/j.rgg.2017.05.002 |
[24] | 冯晓曦, 滕雪明, 何友宇. 初步探讨鄂尔多斯盆地东胜铀矿田成矿作用研究若干问题[J]. 地质调查与研究, 2019, 36(2): 96-103, 108. Feng X X, Teng X X, He Y Y. Study on land subsidence assessment in evaluation of carrying capacity of geological environment[J]. Geological Survey and Research, 2019, 36(2): 96-103, 108. |
[25] | 肖志斌, 耿建珍, 涂家润, 等. 砂岩型铀矿微区原位U-Pb同位素定年技术方法研究[J]. 岩矿测试, 2020, 39(2): 262-273. Xiao Z B, Geng J Z, Tu J R, et al. In situ U-Pb isotope dating techniques for sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2020, 39(2): 262-273. |
[26] | Xia Y L, Zhang C E. Evolutionary characteristics of the U-Pb isotopic system in a certain uranium deposit in North Guangdong-A discussion on the model for its genesis[J]. Geochemistry (English Language Edition), 1985, 4(3): 257-267. |
[27] | 肖志斌, 张然, 叶丽娟, 等. 沥青铀矿(GBW04420)的微区原位U-Pb定年分析[J]. 地质调查与研究, 2020, 43(1): 1-4. Xiao Z B, Zhang R, Ye L J, et al. In-situ U-Pb dating of pitchblende (GBW04420)[J]. Geological Survey and Research, 2020, 43(1): 1-4. |
[28] | Jin R S, Yu R A, Yang J, et al. Paleo-environmental constraints on uranium mineralization in the Ordos Basin: Evidence from the color zoning of U-bearing rock series[J]. Ore Geology Reviews, 2019(104): 175-189. |
[29] | 李子颖, 秦明宽, 蔡煜琦, 等. 鄂尔多斯盆地砂岩型铀矿成矿作用和前景分析[J]. 铀矿地质, 2020, 36(1): 1-13. Li Z Y, Qin M K, Cai Y Q, et al. Metalllogenic models and prospective analysis of sandstone-type uranium deposits in Ordos Basin[J]. Uranium Geology, 2020, 36(1): 1-13. |
[30] | 谢惠丽, 焦养泉, 刘章月, 等. 鄂尔多斯盆地北部铀矿床铀矿物赋存状态及富集机理[J]. 地球科学, 2020, 45(5): 1531-1543. Xie H L, Jiao Y Q, Liu Z Y, et al. Occurrence and enrichment mechanism of uranium ore minerals from sandstone-type uranium deposit, northern Ordos Basin[J]. Earth Science, 2020, 45(5): 1531-1543. |
[31] | 朱强, 俞礽安, 李建国, 等. 鄂尔多斯盆地东北部塔然高勒地区还原介质对砂岩型铀矿的控制[J]. 煤田地质与勘探, 2018, 46(6): 11-18. Zhu Q, Yu N A, Li J G, et al. Control of reducing medium on uranium deposit of sandstone in Tarangaole Area, northeastern Ordos Basin[J]. Coal Geology & Exploration, 2018, 46(6): 11-18. |
[32] | Miao P S, Jin R S, Li J G, et al. The first discovery of a large sandstone-type uranium deposit in Aeolian depositional environment[J]. Acta Geologica Sinica (English Edition), 2020, 94(2): 583-584. doi: 10.1111/1755-6724.14518 |
[33] | 汤超, 魏佳林, 肖鹏, 等. 松辽盆地北部砂岩型铀矿铀的赋存状态研究[J]. 矿产与地质, 2017, 31(6): 1009-1016. Tang C, Wei J L, Xiao P, et al. Research on uranium occurrence state of sandstone-type uranium deposit in the northern Songliao Basin[J]. Mineral Resources and Geology, 2017, 31(6): 1009-1016. |
[34] | 马强, 冯志刚, 孙静, 等. 新疆某地浸砂岩型铀矿中铀赋存形态的研究[J]. 岩矿测试, 2012, 31(3): 501-506. Ma Q, Feng Z G, Sun J, et al. Study on chemical speciation of uranium in samples from in-situ leaching sandstone-type uranium deposit in Xinjiang[J]. Rock and Mineral Analysis, 2012, 31(3): 501-506. |
[35] | 闵茂中, 吴燕玉, 张文兰, 等. 铀石-沥青铀矿稠密韵律生长环带及其成因意义[J]. 矿物学报, 1999, 19(1): 15-19. Min M Z, Wu Y Y, Zhang W L, et al. A densely zoned rhythmically intergrowth of coffinite and pitchblende and its genetic significance[J]. Acta Mineralogica Sinica, 1999, 19(1): 15-19. |
[36] | 张莉娟, 安树清, 徐铁民, 等. 鄂尔多斯砂岩型铀矿床中灰绿色砂岩还原能力影响因素研究[J]. 岩矿测试, 2018, 37(4): 396-403. Zhang L J, An S Q, Xu T M, et al. Study on influcing factors for reduction capacity of gray-green sandstone in Ordos sandstone-type uranium deposits[J]. Rock and Mineral Analysis, 2018(4): 396-403. |
[37] | 张成江, 王德荫, 傅永全. 铀矿物学[M]. 北京: 原子能出版社, 2007. Zhang C J, Wang D Y, Fu Y Q. Uranium mineralogy[M]. Beijing: Atomic Energy Press, 2007. |
[38] | 王濮. 系统矿物学[M]. 北京: 地质出版社, 1987. Wang P. Systematic mineralogy[M]. Beijing.Geological Publishing House, 1987. |
[39] | 刘青宪. 铀矿物学[M]. 哈尔滨: 哈尔滨工程大学出版社, 2016. Liu Q X. Uranium mineralogy[M]. Harbin: Harbin Engineering University Press, 2016. |
[40] | 段晓华, 张君弟. 鄂尔多斯盆地西南缘砂岩型铀矿赋矿地层及矿化特征[J]. 铀矿地质, 2019, 35(2): 88-94. Duan X H, Zhang J D. Stratigraphy and mineralization feature of ore-bearing layer for sandstone-type uranium deposit in the southwestern margin of Ordos Basin[J]. Uranium Geology, 2019, 35(2): 88-94. |
[41] | 李伟涛, 李子颖, 李西得, 等. 二连盆地哈达图砂岩型铀矿铀的赋存状态研究[J]. 铀矿地质, 2020, 36(1): 20-27. Li W T, Li Z Y, Li X D, et al. Study on uranium occurring state in Hadatu sandstone-type uranium deposit in Erlian Basin[J]. Uranium Geology, 2020, 36(1): 20-27. |
[42] | 魏佳林, 汤超, 金若时, 等. 松辽盆地北部龙虎泡地区铁钛氧化物与砂岩型铀矿化关系探讨[J]. 岩石矿物学杂志, 2019, 38(3): 375-389. Wei J L, Tang C, Jin R S, et al. A study of the relationship between the Fe-Ti oxide and sandstone-hosted uranium mineralization in Longhupao Area, northern Songliao Basin[J]. Acta Petrologica et Mineralogica, 2019, 38(3): 375-389. |
[43] | 葛祥坤, 范光, 汪波, 等. 自动矿物分析仪用于砂岩型铀矿床矿物组成的定量分析[M]//中国核科学技术进展报告(第五卷), 2017: 586-591. Ge X K, Fan G, Wang B, et al.Mineral quantitative analysis of sandstone-type uranium ores by automatic mineral quantitative identification system[M]//Progress Report on China Nuclear Science & Technology (Vol.5), 2017: 586-591. |
Regional structure and study area location map of Ordos Basin (According to Liu, et al., 2005)
Backscatter electron diagrams of uranium minerals
Backscattered electron images and AMICS diagrams of uraninite and its association minerals
Backscattered electron images and energy dispersive spectrometer diagrams of four uranium minerals
Backscattered electron images and energy dispersive spectrometer diagrams of three uranium minerals