Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 1
Article Contents

MIN Hong, LIU Qian, ZHANG Jin-yang, ZHOU Hai-ming, YAN De-tian, XING Yan-jun, LI Chen, LIU Shu. Study on the Mineralogical Characteristics of 12 Copper Concentrates by X-ray Fluorescence Spectrometry, X-ray Powder Diffraction and Polarization Microscope[J]. Rock and Mineral Analysis, 2021, 40(1): 74-84. doi: 10.15898/j.cnki.11-2131/td.202004020038
Citation: MIN Hong, LIU Qian, ZHANG Jin-yang, ZHOU Hai-ming, YAN De-tian, XING Yan-jun, LI Chen, LIU Shu. Study on the Mineralogical Characteristics of 12 Copper Concentrates by X-ray Fluorescence Spectrometry, X-ray Powder Diffraction and Polarization Microscope[J]. Rock and Mineral Analysis, 2021, 40(1): 74-84. doi: 10.15898/j.cnki.11-2131/td.202004020038

Study on the Mineralogical Characteristics of 12 Copper Concentrates by X-ray Fluorescence Spectrometry, X-ray Powder Diffraction and Polarization Microscope

More Information
  • BACKGROUND

    China is the largest importer of copper concentrate in the world. Studying the mineralogical characteristics of copper concentrates imported from different origins can be used to support the origin analysis and solid waste identification of copper concentrates.

    OBJECTIVES

    To investigate the elemental composition and mineral assemblage characteristics of imported copper concentrates from different mining areas, and to discuss the mineralogical differences of copper concentrates of different genetic types.

    METHODS

    The copper concentrates imported from different mining areas were comprehensively analyzed by X-ray fluorescence spectrometry (XRF), X-ray powder diffraction (XRD) and polarized microscopy (PM).

    RESULTS

    X-ray fluorescence spectroscopy analysis showed that the main elements of the copper concentrates were Cu, Fe, S, O with minor Zn, Si, Al, Mg, Ca, Pb. X-ray powder diffraction phase analysis showed that the main phase of the copper concentrate sample was chalcopyrite, followed by pyrite and sphalerite. Polarization microscope showed that the content of chalcopyrite in copper concentrates was between 88% and 98%, and it was found that chalcopyrite was associated with sphalerite, pyrite and pyrrhotite, and that sphalerite was associated with bornite, arsenotetrahedrite. Chalcopyrite, arsenotetrahedrite and bornite form intergrowths. Combining the analysis of different genetic types of copper concentrates, samples of porphyry, skarn and VMS deposits were composed of chalcopyrite, pyrite and sphalerite with respective special minerals of biotite, weddellite and lead anglesite. The main minerals of the IOCG deposit samples were chalcopyrite, pyrrhotite and talc.

    CONCLUSIONS

    Through the combination of XRF, XRD and PM, the elemental content and phase composition of copper concentrate samples were characterized. The mineralogical characteristics of copper concentrate samples from different origins have been more comprehensively analyzed, which is of great significance for risk identification and control of imported copper concentrates.

  • 加载中
  • [1] Mitchell A H G.Mineral deposits and global tectonic settings[M].London: Academic Press Inc.Ltd, 1981.

    Google Scholar

    [2] Hutchison C S. Economic deposits and their tectonic setting[M]. New York: Macmillan, 1983.

    Google Scholar

    [3] Jankovic S. The copper deposits and geotectonic setting of the Thethyan Eurasian metallogenic belt[J]. Mineralium Deposita, 1977, 12(1): 37-47. doi: 10.1007/BF00204503

    CrossRef Google Scholar

    [4] Bradley D, Cand Leach D L. Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands[J]. Mineralium Deposita, 2003, 38(6): 652-667. doi: 10.1007/s00126-003-0355-2

    CrossRef Google Scholar

    [5] Brzovic A, Villaescusa E. Rock mass characterization and assessment of block-forming geological discontinuities during caving of primary copper ore at the El Teniente mine, Chile[J]. International Journal of Rock Mechanics & Mining Sciences, 2007, 44(4): 565-583.

    Google Scholar

    [6] Lena V S, Emerson R, Craig A, et al. Spatial and temporal zoning of hydrothermal alteration and mineralization in the Sossego iron oxide copper gold deposit, Carajás Mineral Province, Brazil: Paragenesis and stable isotope constraints[J]. Mineralium Deposita, 2008, 43: 129-159. doi: 10.1007/s00126-006-0121-3

    CrossRef Google Scholar

    [7] Machault J, Barbanson L, Augé T, et al. Mineralogical and microtextural parameters in metals ores traceability studies[J]. Ore Geology Reviews, 2014, 63: 307-327. doi: 10.1016/j.oregeorev.2014.05.019

    CrossRef Google Scholar

    [8] Rozendaal A, Horn R. Textural, mineralogical and chemical characteristics of copper reverb furnace smelter slag of the Okiep Copper District, South Africa[J]. Minerals Engineering, 2013, 52: 184-190. doi: 10.1016/j.mineng.2013.06.020

    CrossRef Google Scholar

    [9] Soysouvanh V, Ariffin K S, Wantanabe K. Ore mineralogy and geochemistry of the Phu Kham Porphyry copper-gold deposit, Hosted within N-E Fault Zone, Lao PDR[J]. Procedia Chemistry, 2016, 19: 961-968. doi: 10.1016/j.proche.2016.03.142

    CrossRef Google Scholar

    [10] Velasco F, Herrero J M, Suárez S, et al. Supergene features and evolution of gossans capping massive sulphide deposits in the Iberian Pyrite Belt[J]. Ore Geology Reviews, 2013, 53: 181-203. doi: 10.1016/j.oregeorev.2013.01.008

    CrossRef Google Scholar

    [11] 梅燕雄, 裴荣富, 杨德凤, 等. 全球成矿域和成矿区带[J]. 矿床地质, 2009, 28(4): 383-389.

    Google Scholar

    Mei Y X, Pei R F, Yang D F, et al. Global metallogenic domains and districts[J]. Mineral Deposits, 2009, 28(4): 383-389.

    Google Scholar

    [12] 张强, 钟琼, 贾振宏, 等. 世界铜矿资源与矿山铜生产状况分析[J]. 矿产与地质, 2014, 28(2): 196-201.

    Google Scholar

    Zhang Q, Zhong Q, Jia Z H, et al. An analysis on global copper ore resource and copper production of mines[J]. Mineral Resources and Geology, 2014, 28(2): 196-201.

    Google Scholar

    [13] 刘喜锋, 贾玉衡, 刘琰. 新疆若羌-且末戈壁料软玉的地球化学特征及成因类型研究[J]. 岩矿测试, 2019, 38(3): 316-325.

    Google Scholar

    Liu X F, Jia Y H, Liu Y. Geochemical characteristics and genetic types of Gobi nephrite in Ruoqiang-Qiemo, Xinjiang[J]. Rock and Mineral Analysis, 2019, 38(3): 316-325.

    Google Scholar

    [14] Seetha D, Velraj G. FT-IR, XRD, SEM-EDS, EDXRF and chemometric analyses of archaeological artifacts recently excavated from Chandravalli in Karnataka State, South India[J]. Radiation Physics and Chemistry, 2019, 162: 114-120. doi: 10.1016/j.radphyschem.2019.03.017

    CrossRef Google Scholar

    [15] Murat H, Necdet T. A combined polarizing microscope, XRD, SEM, and specific gravity study of the petrified woods of volcanic origin from the Camlidere-Celtikci-Gudul fossil forest, in Ankara, Turkey[J]. Journal of African Earth Sciences, 2009, 53: 141-157. doi: 10.1016/j.jafrearsci.2009.01.001

    CrossRef Google Scholar

    [16] 孟长峰, 薛俊辉. X射线荧光光谱-X射线衍射研究宁夏贺兰石岩石矿物学特征[J]. 岩矿测试, 2018, 37(1): 50-55.

    Google Scholar

    Meng C F, Xue J H. Study on petrological and mineralogical characteristics of the Ningxia Helan stone by X-ray fluorescence spectrometry and X-ray diffraction[J]. Rock and Mineral Analysis, 2018, 37(1): 50-55.

    Google Scholar

    [17] 刘倩, 秦晔琼, 刘曙, 等. X射线荧光光谱结合BP神经网络识别进口铜精矿产地[J]. 光谱学与光谱分析, 2020, 40(9): 2884-2890.

    Google Scholar

    Liu Q, Qin Y Q, Liu S, et al. X-ray fluorescence spectroscopy combined with BP neural network to identify imported copper concentrate origin[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2884-2890.

    Google Scholar

    [18] 刘喜锋, 张红清, 刘琰, 等. 世界范围内代表性碧玉的矿物特征和成因研究[J]. 岩矿测试, 2018, 37(5): 479-489.

    Google Scholar

    Liu X F, Zhang H Q, Liu Y, et al. Mineralogical characteristics and genesis of green nephrite from the world[J]. Rock and Mineral Analysis, 2018, 37(5): 497-489.

    Google Scholar

    [19] 李欣桐, 先怡衡, 樊静怡, 等. 应用扫描电镜-X射线衍射-电子探针技术研究河南淅川绿松石矿物学特征[J]. 岩矿测试, 2019, 38(4): 373-381.

    Google Scholar

    Li X T, Xian Y H, Fan J Y, et al. Application of XRD-SEM-XRD-EMPA to study the mineralogical characteristics of turquoise from Xichuan, Henan Province[J]. Rock and Mineral Analysis, 2019, 38(4): 373-381.

    Google Scholar

    [20] Hupp N, Donovan J. Quantitative mineralogy for facies definition in the Marcellus shale (Appalachian Basin, USA) using XRD-XRF integration[J]. Sedimentary Geology, 2018, 371: 16-31. doi: 10.1016/j.sedgeo.2018.04.007

    CrossRef Google Scholar

    [21] 吕新明, 田延河, 宁海龙, 等. 波长色散X射线荧光光谱仪和多晶X射线衍射仪联用技术鉴定进口铜矿和含铜物料[J]. 中国无机分析化学, 2018, 8(4): 21-25.

    Google Scholar

    Lv X M, Tian Y H, Ning H L, et al. Indentification of imports of copper materials by wavelength dispersive X-ray fluorescence (XRF) spectrometer and polycrystalline X-ray diffraction (XRD) spectrometry[J]. Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4): 21-25.

    Google Scholar

    [22] 宋义, 古松海, 孙鑫, 等. 铜精矿与铜冶炼渣的物相鉴别[J]. 冶金分析, 2015, 35(3): 25-31.

    Google Scholar

    Song Y, Gu S H, Sun X, et al. Phase identification of copper concentrate and copper smelting slag[J]. Metallurgical Analysis, 2015, 35(3): 25-31.

    Google Scholar

    [23] 咸洋, 闵红, 朱之秀, 等. 多技术联用鉴别含铜物料固体废物属性[J]. 机械工程材料, 2018, 12(42): 18-26.

    Google Scholar

    Xian Y, Min H, Zhu Z X, et al. Solid waste characteristic identification of copper-containing materials with a variety of techniques[J]. Materials for Mechanical Engineering, 2018, 12(42): 18-26.

    Google Scholar

    [24] Deckart K, Silva W, Sprohnle C, et al. Timing and dur-ation of hydrothermal activity at the Los Bronces porphyry cluster: An update[J]. Mineralium Deposita, 2014, 49: 535-546. doi: 10.1007/s00126-014-0512-9

    CrossRef Google Scholar

    [25] Seedorff E, Dilles H, Proffett M, et al. Porphyry deposits: Characteristics and origin of hypogene features[J]. Society of Economic Geologists, 2005, 100: 251-298.

    Google Scholar

    [26] 毛景文, 罗茂澄, 谢桂青, 等. 斑岩铜矿床的基本特征和研究勘查新进展[J]. 地质学报, 2014, 88(12): 2153-2175.

    Google Scholar

    Mao J W, Luo M C, Xie G Q, et al. Basic characteristics and new advances in research and exploration on porphyry copper deposits[J]. Acta Geologica Sinica, 2014, 88(12): 2153-2175.

    Google Scholar

    [27] 瞿泓滢, 裴荣富, 梅燕雄, 等. 国外超大型-特大型铜矿床成矿特征[J]. 中国地质, 2013, 40(2): 371-390.

    Google Scholar

    Qu H Y, Pei R F, Mei Y X, et al. Metallogenic characteristics of superlarge and exceptional superlarge Cu deposits abroad[J]. Geology in China, 2013, 40(2): 371-390.

    Google Scholar

    [28] 周平, 唐金荣, 杨宗喜, 等. 铜矿资源战略分析[M]. 北京: 地质出版社, 2012.

    Google Scholar

    Zhou P, Tang J R, Yang Z X, et al. Strategic analysis of copper resources[M]. Beijing: Geological Publishing House, 2012.

    Google Scholar

    [29] 胡树起, 马生明, 刘崇民. 斑岩型铜矿勘查地球化学研究现状及进展[J]. 物化与化探, 2011, 35(4): 431-437.

    Google Scholar

    Hu S Q, Ma S M, Liu C M. The present situation and research advances of exploration geochemistry for porphyry copper deposits[J]. Geophysical & Geochemical Exploration, 2011, 35(4): 431-437.

    Google Scholar

    [30] Lee C T A, Tang M. How to make porphyry deposits[J]. Earth and Planetary Science Letters, 2020, 628(11): 58-68.

    Google Scholar

    [31] 翟裕生, 姚书振, 蔡克勤. 矿床学[M]. 北京: 地质出版社, 2011.

    Google Scholar

    Zhai Y S, Yao S Z, Cai K Q. Deposits[M]. Beijing: Geological Publishing House, 2011.

    Google Scholar

    [32] Lena V S, Roberto P, Murray W, et al. Mineral chemistry of ore and hydrothermal alteration at the Sossego iron oxide-copper-gold deposit, Carajas mineral province, Brazil[J]. Ore Geology Reviews, 2008, 37: 317-336.

    Google Scholar

    [33] 刘心同, 孙健. 铜矿贸易与质量检测[M]. 青岛: 中国海洋出版社, 2016.

    Google Scholar

    Liu X T, Sun J. Copper ore trade and quality inspection[M]. Qingdao: China Ocean Press, 2016.

    Google Scholar

    [34] Chen H Y. External sulphur in IOCG mineralization: Implications on definition and classification of the IOCG clan[J]. Ore Geology Reviews, 2013, 51: 74-78. doi: 10.1016/j.oregeorev.2012.12.002

    CrossRef Google Scholar

    [35] Franklin J M, Gibson H L, Jonasson I R, et al. Volcan-ogenic massive sulfide deposits[J]. Economic Geologists, 2005, 100: 523-560.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(5)

Article Metrics

Article views(3124) PDF downloads(112) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint