Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2021 Vol. 40, No. 2
Article Contents

LI Tan-ping, LI Ai-yang. Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 196-205. doi: 10.15898/j.cnki.11-2131/td.202004090043
Citation: LI Tan-ping, LI Ai-yang. Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry[J]. Rock and Mineral Analysis, 2021, 40(2): 196-205. doi: 10.15898/j.cnki.11-2131/td.202004090043

Determination of Trace Elements in Attapulgite Clay by Inductively Coupled Plasma-Tandem Mass Spectrometry

  • BACKGROUND

    Attapulgite clay is a water-rich magnesium aluminosilicate mineral with a layered chain structure. The different genesis of the deposit results in a different composition of trace elements in attapulgite clay. Elements Be, Cr, Ni, As, Cd, Sb, Hg, and Pb have adverse effects to health and environment, while V, Mn, Co, Cu, Zn, Mo, Sn and Ba can affect the performance and application of attapulgite clay. Therefore, accurate analysis of trace elements in attapulgite clay can provide a theoretical basis for the high-efficiency value-added deep processing of attapulgite clay. Determination of trace elements in rocks and minerals by inductively coupled plasma-mass spectrometry (ICP-MS) has the characteristics of low limit of detection (LOD) and high sensitivity. Complex spectral interference during the analysis is difficult to completely eliminate, even if collision reaction cell (CRC) technology is used.

    OBJECTIVES

    To establish an analytical method for the accurate determination of trace elements in attapulgite clay by ICP-MS/MS.

    METHODS

    In view of the spectral interference in the analysis process, in the MS/MS mode, O2 and NH3/He were added into CRC as reaction gases, and the corresponding oxide ions and cluster ions were generated by mass shift reaction to eliminate the interference. Internal standard elements with similar mass number and similar mass spectrometry behavior were selected to correct the matrix effect and stabilize the analysis signal.

    RESULTS

    The microwave digestion of attapulgite samples with mixed nitric acid, hydrochloric acid and hydrofluoric acid can not only accelerate the digestion speed of the sample, but also maintain the stability of the analytical elements in the digestion solution. The method was used to determine 16 trace elements in national standard reference material basalt (GBW07105). The relative errors of analytes were -9.60%-8.21%, and the relative standard deviation (RSD) was less than 6.0%. Under the selected analytical conditions, the LOD of analyte was 0.13-51.6ng/L.

    CONCLUSIONS

    ICP-MS/MS can effectively reduce the interference of mass spectrometry and improve the accuracy and sensitivity of some specific isotopes in complex media. The method is suitable for the rapid determination of trace elements in attapulgite clay.

  • 加载中
  • [1] 周苏闽, 冯良东, 王莉. 化学沉积法制备凹凸棒土/银核壳结构棒状银粉[J]. 非金属矿, 2011, 34(4): 15-18. doi: 10.3969/j.issn.1000-8098.2011.04.005

    CrossRef Google Scholar

    Zhou S M, Feng L D, Wang L. Preparation of attapulgite/Ag core-shell structure rod-like silver powder by electroless deposition[J]. Non-Metallic Mines, 2011, 34(4): 15-18. doi: 10.3969/j.issn.1000-8098.2011.04.005

    CrossRef Google Scholar

    [2] 杨敏, 王丽娟, 宋岩. 凹凸棒石吸附重金属的研究进展[J]. 硅酸盐通报, 2019, 38(11): 3445-3464.

    Google Scholar

    Yang M, Wang L J, Song Y. Research progress on heavy metals adsorption by attapulgite[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(11): 3445-3464.

    Google Scholar

    [3] 周灵群. 凹凸棒石油脂脱色行为及其机理[J]. 食品科学, 2019, 40(3): 89-93.

    Google Scholar

    Zhou L Q. Adsorption behavior and mechanism of attapulgite when used in oil bleaching[J]. Food Science, 2019, 40(3): 89-93.

    Google Scholar

    [4] Junior E D, de Almeida J M F, do Nascimento Silva I, et al. pH-responsive release system of isoniazid using palygorskite as a nanocarrier[J]. Journal Drug Delivery Science and Technology, 2020, 55: 101399. doi: 10.1016/j.jddst.2019.101399

    CrossRef Google Scholar

    [5] 白国梁, 陶海兵, 蔡思敏, 等. 凹凸棒石(PG)负载V2O5催化剂脱除气态Hg0的研究[J]. 环境科学学报, 2019, 39(7): 2369-2376.

    Google Scholar

    Bai G L, Tao H B, Cai S M, et al. Removal of vapor-phase Hg0 over a V2O5/PG catalyst[J]. Acta Scientiae Circumstantiae, 2019, 39(7): 2369-2376.

    Google Scholar

    [6] Aguzzi C, Cerezo P, Viseras C, et al.Use of clays as drug delivery systems: Possibilities and limitations[J].2007, 36: 22-36.

    Google Scholar

    [7] Ding C, Xiao S, Lin Y, et al. Attapulgite-supported nano-Fe0/peroxymonsulfate for quinclorac removal: Performance, mechanism and degradation pathway[J]. Chemical Engineering Journal, 2019, 360: 104-114. doi: 10.1016/j.cej.2018.11.189

    CrossRef Google Scholar

    [8] Haden W L. Attapulgite: properties and uses[J]. Clays and Clay Minerals, 1961, 10: 284-290. doi: 10.1346/CCMN.1961.0100123

    CrossRef Google Scholar

    [9] 陈明岩, 程大明, 李玲, 等. 食品添加剂凹凸棒黏土的测定与表征[J]. 化学试剂, 2011, 33(3): 236-238. doi: 10.3969/j.issn.0258-3283.2011.03.012

    CrossRef Google Scholar

    Chen M Y, Cheng D M, Li L, et al. Determination and characterization of food additive attapulgite clay[J]. Chemical Reagents, 2011, 33(3): 236-238. doi: 10.3969/j.issn.0258-3283.2011.03.012

    CrossRef Google Scholar

    [10] Yang H, Tang A, Ouyang J, et al. From natural atta-pulgite to mesoporous materials: Methodology, characterization and structural evolution[J]. Journal of Physics Chemistry B, 2010, 114(7): 2390-2398. doi: 10.1021/jp911516b

    CrossRef Google Scholar

    [11] 凌霞, 吴洁, 孟元华. 电感耦合等离子体发射光谱法测定凹凸棒黏土中的多种金属元素[J]. 化学试剂, 2012, 34(6): 529-531. doi: 10.3969/j.issn.0258-3283.2012.06.013

    CrossRef Google Scholar

    Lin X, Wu J, Meng Y H. Determination of multi-metal in attapulgite by ICP-AES[J]. Chemical Reagents, 2012, 34(6): 529-531. doi: 10.3969/j.issn.0258-3283.2012.06.013

    CrossRef Google Scholar

    [12] 董学林, 何海洋, 储溱, 等. 碱熔沉淀分离-电感耦合等离子体质谱法测定伴生重晶石稀土矿中的稀土元素[J]. 岩矿测试, 2019, 38(6): 620-630.

    Google Scholar

    Dong X L, He H Y, Chu Q, et al. Determination of rare earth elements in barite-associated rare earth ores by alkaline precipitation separation-inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(6): 620-630.

    Google Scholar

    [13] Liu T, He T, Shi Q, et al. Rapid Determination of boron in 61 soil, sediment, and rock reference materials by ICP-MS[J]. Atomic Spectroscopy, 2019, 40(2): 55-62. doi: 10.46770/AS.2019.02.004

    CrossRef Google Scholar

    [14] 阳国运, 唐裴颖, 张洁, 等. 电感耦合等离子体质谱法测定地球化学样品中的硼碘锡锗[J]. 岩矿测试, 2019, 38(2): 154-159.

    Google Scholar

    Yang G Y, Tang P Y, Zhang J, et al. Determination of boron, iodine, tin and germanium in geochemical samples by inductively coupled plasma-mass spectrometry[J]. Rock and Mineral Analysis, 2019, 38(2): 154-159.

    Google Scholar

    [15] Zhang L Y, Fang M, Sun H L, et al. Analysis of iodine isotopes in travertine from baishuitai, Yunnan Province, China[J]. Atomic Spectroscopy, 2020, 41(5): 181-187.

    Google Scholar

    [16] 徐进力, 邢夏, 唐瑞玲, 等. 动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J]. 岩矿测试, 2019, 38(4): 394-402.

    Google Scholar

    Xu J L, Xing X, Tang R L, et al. Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J]. Rock and Mineral Analysis, 2019, 38(4): 394-402.

    Google Scholar

    [17] Doker S. Exploiting aerosol dilution for the determination of ultra-trace elements in honey by collision/reaction cell inductively coupled plasma mass spectrometry (CRC-ICP-MS) without thermal digestion[J]. Analytical Methods, 2017, 9: 1710-1717. doi: 10.1039/C6AY03140D

    CrossRef Google Scholar

    [18] Fernandez S D, Encinar J R, Sanz-Medel A, et al. Determination of low B/Ca ratios in carbonates using ICP-QQQ[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(6): 2005-2014. doi: 10.1002/2015GC005817

    CrossRef Google Scholar

    [19] Machado R C, Amaral C D B, Schiavo D, et al. Complex samples and spectral interferences in ICP-MS: Evaluation of tandem mass spectrometry for interference-free determination of cadmium, tin and platinum group elements[J]. Microchemical Journal, 2017, 130: 271-275. doi: 10.1016/j.microc.2016.09.011

    CrossRef Google Scholar

    [20] 陈文, 樊小伟, 郭才女, 等. 电感耦合等离子体串联质谱法测定高纯稀土中铁的含量[J]. 分析化学, 2019, 47(3): 403-409.

    Google Scholar

    Chen W, Fan X W, Guo C N, et al. Determination of iron content in high purity rare earth by inductively coupled plasma-tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2019, 47(3): 403-409.

    Google Scholar

    [21] Perez-Alvarez E P, Garcia R, Barrulas P, et al. Classification of wines according to several factors by ICP-MS multi-element analysis[J]. Food Chemistry, 2019, 270: 273-280. doi: 10.1016/j.foodchem.2018.07.087

    CrossRef Google Scholar

    [22] Petrov P, Russell B, Douglas D N, et al. Interference-free determination of sub ng kg-1 levels of long-lived 93Zr in the presence of high concentrations (μg kg-1) of 93Mo and 93Nb using ICP-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2017, 410(3): 1029-1037.

    Google Scholar

    [23] Xing S, Zhang W, Qiao J, et al. Determination of ultra-low level plutonium isotopes (239Pu, 240Pu) in environmental samples with high uranium[J]. Talanta, 2018, 189: 357-364.

    Google Scholar

    [24] El-Eswed B I, Aldagag O M, Khalili F I, et al. Efficiency and mechanism of stabilization/solidification of Pb(Ⅱ), Cd(Ⅱ), Cu(Ⅱ), Th(Ⅳ) and U(Ⅵ) in metakaolin based geopolymers[J]. Applied Clay Science, 2017, 140: 148-156. doi: 10.1016/j.clay.2017.02.003

    CrossRef Google Scholar

    [25] 符靓, 施树云, 陈晓青. 电感耦合等离子体串联质谱法测定活性白土中痕量毒理性元素[J]. 分析化学, 2018, 46(8): 1253-1260.

    Google Scholar

    Fu L, Shi S Y, Chen X Q. Accurate determination of trace toxic elements in activated clay using inductively coupled plasma tandem mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2018, 46(8): 1253-1260.

    Google Scholar

    [26] Kopp J F, Müller S M, Pohl G, et al. A quick and simple method for the determination of six trace elements in mammalian serum samples using ICP-MS/MS[J]. Journal of Trace Elements in Medicine and Biology, 2019, 54: 221-225. doi: 10.1016/j.jtemb.2019.04.015

    CrossRef Google Scholar

    [27] 王丙涛, 赵旭, 涂小珂, 等. ICP-MS/MS检测食品中磷、硒、砷的含量[J]. 现代食品科技, 2017, 33(7): 1-6.

    Google Scholar

    Wang B T, Zhao X, Tu X K, et al. The determination of P, As and Se in food by triple quadrupole inductively coupled plasma mass spectrometry[J]. Modern Food Science and Technology, 2017, 33(7): 1-6.

    Google Scholar

    [28] Fu L, Xie H, Huang J, et al. Rapid determination of trace elements in serum of hepatocellular carcinoma patients by inductively coupled plasma tandem mass spectrometry[J]. Analytica Chimica Acta, 2020, 1112: 1-7. doi: 10.1016/j.aca.2020.03.054

    CrossRef Google Scholar

    [29] Balcaen L, Bolea-Fernandez E, Resano M, et al. Inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS): A powerful and universal tool for the interference-free determination of (ultra) trace elements-A tutorial review[J]. Analytica Chimica Acta, 2015, 894: 7-19. doi: 10.1016/j.aca.2015.08.053

    CrossRef Google Scholar

    [30] Amaral C D B, Amais R S, Fialho L L, et al. A novel strategy to determine As, Cr, Hg and V in drinking water by ICP-MS/MS[J]. Analytical Methods, 2015, 7: 1215-1220. doi: 10.1039/C4AY02811B

    CrossRef Google Scholar

    [31] Walkner C, Gratzer R, Meisel T, et al. Multi-element analysis of crude oils using ICP-QQQ-MS[J]. Organic Geochemistry, 2017, 103: 22-30. doi: 10.1016/j.orggeochem.2016.10.009

    CrossRef Google Scholar

    [32] Amaral C D B, Machado R C, Virgilio A, et al. Critical evaluation of internal standardization in ICP tandem mass spectrometry and feasibility of the oxygen reaction for boron determination in plants[J]. Journal of Analytical Atomic Spectrometry, 2016, 31(6): 1179-1184.

    Google Scholar

    [33] Fu L, Xie H, Shi S. Multielement analysis of Zanthoxylum bungeanum Maxim. essential oil using ICP-MS/MS[J]. Analytical and Bioanalytical Chemistry, 2018, 410: 3769-3778.

    Google Scholar

    [34] Sesi N N, Hieftje G M. Studies into the interelement matrix effect in inductively coupled plasma spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 1996, 51(13): 1601-1628.

    Google Scholar

    [35] 张杨赞. 高盐样品基体效应的研究及SPE-ICP-MS分析方法的建立[D]. 天津: 天津大学, 2019: 23-35.

    Google Scholar

    Zhang Y Z.The research on matrix effect of high salt samples and the establishment of analysis method using solid phase extraction-inductively coupled plasma mass spectrometry[D].Tianjin: Tianjin University, 2019: 23-35.

    Google Scholar

    [36] Virgilio A, Amais R S, Amaral C D B, et al. Reactivity and analytical performance of oxygen as cell gas in inductively coupled plasma tandem mass spectrometry[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2016, 126: 31-36.

    Google Scholar

    [37] 江波, 黄建华. 应用ICP-MS/MS准确测定紫苏好油中的重金属元素[J]. 中国粮油快报, 2019, 34(1): 125-130.

    Google Scholar

    Jiang B, Huang J H. Accurately determination the heavy metal elements in perilla seed oil applying ICP-MS/MS[J]. Journal of the Chinese Cereals and Oil Association, 2019, 34(1): 125-130.

    Google Scholar

    [38] 刘元元, 胡静宇. 电感耦合等离子体串联质谱法测定高纯钼中痕量镉[J]. 冶金分析, 2018, 38(5): 1-6.

    Google Scholar

    Liu Y Y, Hu J Y. Determination of trace cadmium in high-purity molybdenum by inductively coupled plasma tandem mass spectrometry[J]. Metallurgical Analysis, 2018, 38(5): 1-6.

    Google Scholar

    [39] Balcaen L, Bolea-Fernandez E, Resano M, et al. Accurate determination of ultra-trace levels of Ti in blood serum using ICP-MS/MS[J]. Analytica Chimica Acta, 2014, 809: 1-8.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(5)

Article Metrics

Article views(1403) PDF downloads(105) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint