Citation: | SUN Wei-tao, ZHENG You-ye, NIU Xue-yao, QIN Yue-qiang, WANG Wei, QIAO Yan-yi, DI Bao-gang, HOU Hong-xing, ZHANG Shu-ji, CONG Peng-fei. Practicality of Hand-held XRF Analyzer in Rapid Exploration of Porphyry Copper Deposit[J]. Rock and Mineral Analysis, 2021, 40(2): 206-216. doi: 10.15898/j.cnki.11-2131/td.201905020054 |
There is a certain deviation between the on-site analysis results of hand-held XRF and the laboratory analysis results due to the unique technical difficulties in field X-ray fluorescence measurement such as roughness effect, uneven effect and humidity effect of samples.
To seek economic, rapid and practical test conditions of hand-held XRF for rapid exploration of porphyry copper ore in practical work.
Influence of test conditions, such as analytical time, sample content, test distance, sample dry humidity and sample particle size on the analytical results of Niton XL3t GOLDD+ hand-held XRF was quantitatively studied.
The results showed that, under the best test time of 90s, the determination limits of Cu, Mo, Pb, and Zn were 57μg/g, 14μg/g, 24μg/g, and 38μg/g, respectively, and the calculation formula for the determination limit was given. The field analysis test distance should be less than 5mm and the sample surface should be kept dry. The test method for bulk sample was the simplest but the test results varied the most. When sample was crushed to a particle size of 80 mesh or above, the stability and accuracy of the results were best. Considering that it took a long time to crush sample into 80 mesh, the mixed state of the sample after crushing was better strategy for field testing.
The practical application of core scanning in Qulong porphyry copper deposit in Tibet shows that the handheld XRF analyzer is suitable for in-situ analysis and can meet the requirements of rapid exploration and evaluation such as delineation of copper ore bodies in field, which can greatly improve work efficiency and reduce exploration cost.
[1] | 王毅民, 王晓红, 高玉淑. 地球科学中的现代分析技术[J]. 地球科学进展, 2003, 18(3): 476-482. doi: 10.3321/j.issn:1001-8166.2003.03.023 Wang Y M, Wang X H, Gao Y S. Modern analytical technologies in Earth sciences[J]. Advances in Earth Sciences, 2003, 18(3): 476-482. doi: 10.3321/j.issn:1001-8166.2003.03.023 |
[2] | Bosco G L. Development and application of portable, hand-held X-ray fluorescence spectrometers[J]. Trends in Analytical Chemistry, 2013, 45: 121-134. doi: 10.1016/j.trac.2013.01.006 |
[3] | 詹勇, 马林霄, 曾瑞垠. 便携式X射线荧光仪在刚果(金)Kapolowe铜钴矿勘查中的应用[J]. 矿物学报, 2015(A1): 1118-1119. Zhan Y, Ma L X, Zeng R Y. Application of portable X-ray fluorescence instrument in exploration of Kapolowe copper-cobalt deposit in Congo(King)[J]. Acta Mineralogica Sinica, 2015(A1): 1118-1119. |
[4] | 杨帆, 郝志红, 刘华忠, 等. 便携式能量色散X射线荧光光谱仪在新疆东天山浅钻化探异常查证中的应用[J]. 岩矿测试, 2015, 34(6): 665-671. Yang F, Hao Z H, Liu H Z, et al. Application of Minipal 4 portable energy dispersive X-ray fluorescence spectrometer in the verification of geochemical anomaly delineated by shallow hole drill core in eastern Tianshan[J]. Rock and Mineral Analysis, 2015, 34(6): 665-671. |
[5] | 时培哲, 刘高杰, 张文, 等. 手持式XRF快速分析仪在海外地质勘查中的应用[J]. 黄金, 2018, 39(11): 79-83. doi: 10.11792/hj20181119 Shi P Z, Liu G J, Zhang W, et al. Application of handheld XRF rapid analyzer in overseas geological exploration[J]. Gold, 2018, 39(11): 79-83. doi: 10.11792/hj20181119 |
[6] | 李孜腾, 肖福权. 便携式XRF在有色金属矿山地质勘查中的应用范围与方法——以沙溪斑岩型铜矿为例[J]. 世界有色金属, 2019(13): 120-121. doi: 10.3969/j.issn.1002-5065.2019.13.068 Li Z T, Xiao F Q. Application range and method of portable XRF in geological exploration of non-ferrous metal deposits-To Shaxi porphyry copper deposit as an example[J]. World Nonferrous Metals, 2019(13): 120-121. doi: 10.3969/j.issn.1002-5065.2019.13.068 |
[7] | Zhang W, Lentz D R, Charnley B E. Petrogeochemical assessment of rock units and identification of alteration/mineralization indicators using portable X-ray fluorescence measurements: Applications to the Fire Tower Zone(W-Mo-Bi) and the North Zone (Sn-Zn-In), Mount Pleasant deposit, New Brunswick, Canada[J]. Journal of Geochemical Exploration, 2017, 177: 61-72. doi: 10.1016/j.gexplo.2017.02.005 |
[8] | Liao S L, Tao C H, Li H M, et al. Use of portable X-ray fluorescence in the analysis of surficial sediments in the exploration of hydrothermal vents on the southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2017, 36(7): 66-76. doi: 10.1007/s13131-017-1085-0 |
[9] | Ribeiro B T, Silva S H G, Silva E A, et al. Portable X-ray fluorescence (pXRF) applications in tropical soil science[J]. Ciencia E Agrotecnologia, 2017, 41(3): 245-254. doi: 10.1590/1413-70542017413000117 |
[10] | 王豹, 余建新, 黄标, 等. 便携式X射线荧光光谱仪快速监测重金属土壤环境质量[J]. 光谱学与光谱分析, 2015, 35(6): 1735-1740. doi: 10.3964/j.issn.1000-0593(2015)06-1735-06 Wang B, Yu J X, Huang B, et al. Fast monitoring soil environmental qualities of heavy metal by portable X-ray fluorescence spectrometer[J]. Spectroscopy and Spectral Analysis, 2015, 35(6): 1735-1740. doi: 10.3964/j.issn.1000-0593(2015)06-1735-06 |
[11] | 杨桂兰, 商照聪, 李良君, 等. 便携式X射线荧光光谱法在土壤重金属快速检测中的应用[J]. 应用化工, 2016, 45(8): 1586-1591. Yang G L, Shang Z C, Li L J, et al. Application of portable-XRF spectrometrt for rapid determination of common heavy metals in soil[J]. Applied Chemical Industry, 2016, 45(8): 1586-1591. |
[12] | 邝荣禧, 胡文友, 何跃, 等. 便携式X射线荧光光谱法(PXRF)在矿区农田土壤重金属快速检测中的应用研究[J]. 土壤, 2015, 47(3): 589-595. Kuang R X, Hu W Y, He Y, et al. Application of portable X-ray fluorescence (pXRF) for rapid analysis of heavy metals in agricultural soils around mining area[J]. Soils, 2015, 47(3): 589-595. |
[13] | 周树斌. 便携式X荧光仪在重金属水污染检测中的应用[D]. 北京: 中国地质大学(北京), 2017. Zhou S B.Application of portable X-fluorescemeter in heavy metal water pollution detection[D].Beijing: China University of Geolsciences (Beijing), 2017. |
[14] | 罗斌, 葛良全, 王卓, 等. 手持式X荧光分析仪在空气颗粒物分析中的应用[J]. 安全与环境学报, 2013, 13(6): 112-114. Luo B, Ge L Q, Wang Z, et al. Application of handheld X-ray fluorescence analyzer in the analysis of air particulate matter[J]. Journal of Safety and Environment, 2013, 13(6): 112-114. |
[15] | 李秋实, 葛良全, 王卓, 等. 手持式XRF分析仪快速检测大气颗粒物中Cu、Zn、Pb含量[J]. 核电子学与探测技术, 2014, 34(5): 667-670. doi: 10.3969/j.issn.0258-0934.2014.05.028 Li Q S, Ge L Q, Wang Z, et al. Determination of Cu, Zn, Pb in atmospheric particulate matter by the handheld X-ray fluorescence analyzer[J]. Nuclear Electronics & Detection Technology, 2014, 34(5): 667-670. doi: 10.3969/j.issn.0258-0934.2014.05.028 |
[16] | Maria L, Matz N, Britta E. Metal contamination at recreational boatyards linked to the use of antifouling paints-Investigation of soil and sediment with a field portable XRF[J]. Environmental Science and Pollution Research, 2016, 23: 10146-10157. doi: 10.1007/s11356-016-6241-0 |
[17] | 聂黎行, 张烨, 朱俐, 等. 便携式X射线荧光光谱快速无损分析牛黄清心丸(局方)中汞、砷含量及均匀度[J]. 光谱学与光谱分析, 2017, 37(10): 3225-3228. Nie L X, Zhang Y, Zhu L, et al. Fast and nondestructive analysis of content of mercury and arsenic and homogeneity of Niuhuang Qingxin pills by portable X-ray fluorescence spectrometry[J]. Spectroscopy and Spectral Analysis, 2017, 37(10): 3225-3228. |
[18] | Karydasa A G, Kotzamani D, Bernard R. A compositional study of a museum jewellery collection (7th-1st BC) by means of a portable XRF spectrometer[J]. Nuclear Instruments and Methods in Physics Research, 2004, 226: 15-28. doi: 10.1016/j.nimb.2004.02.034 |
[19] | 先怡衡, 李延祥, 杨岐黄. 便携式X荧光光谱结合主成分分析鉴别不同产地的绿松石[J]. 考古与文物, 2016(3): 112-119. Xian Y H, Li Y X, Yang Q H. Portable X-ray fluorescence spectra combined with master component analysis to identify turquoises from different origins[J]. Archaeology and Cultural Relics, 2016(3): 112-119. |
[20] | Adlington L W, Freestone I C. Using handheld pXRF to study medieval stained glass: A methodology using trace elements[J]. MRS Advances, 2017, 2: 1785-1800. doi: 10.1557/adv.2017.233 |
[21] | 吴遵红, 张立红, 吕程, 等. 便携式X射线衍射分析仪在压力管道腐蚀检测中的应用[J]. 特种设备安全技术, 2017(3): 55-58. Wu Z H, Zhang L H, Lv C, et al. Application of X-ray diffraction analyzer in pressure pipe corrosion detection[J]. Safety Technology of Special Equipment, 2017(3): 55-58. |
[22] | 庄岩, 王晓琳, 郭威, 等. 便携式X射线荧光光谱分析仪快速检测弹着痕迹[J]. 刑事技术, 2019, 44(3): 246-249. Zhuang Y, Wang X L, Guo W, et al. Using portable X-ray fluorescent spectrometry to rapidly test the impact marks at gunshot spot[J]. Forensic Science and Technology, 2019, 44(3): 246-249. |
[23] | Bull A, Brown M T, Turner A. Novel use of field-portable-XRF for the direct analysis of trace elements in marine macroalgae[J]. Environmental Pollution, 2017, 220: 228-233. doi: 10.1016/j.envpol.2016.09.049 |
[24] | 杜兴胜, 熊超, 窦小平, 等. 现场X射线荧光光谱分析在钻孔岩芯测量中的应用[J]. 核电子学与探测技术, 2014, 34(6): 775-779. doi: 10.3969/j.issn.0258-0934.2014.06.024 Du X S, Xiong C, Dou X P, et al. Application of on-site X-ray fluorescence spectral analysis in drilling core measurement[J]. Nuclear Electronics and Detection Technology, 2014, 34(6): 775-779. doi: 10.3969/j.issn.0258-0934.2014.06.024 |
[25] | Bruno L. A review of pXRF(field portable X-ray fluorescence) applications for applied geochemistry[J]. Journal of Geochemical Exploration, 2018, 188: 350-363. doi: 10.1016/j.gexplo.2018.02.006 |
[26] | 唐晓勇, 倪晓芳, 商照聪. 土壤中铁元素对铬元素p-XRF测定准确度的影响与校正[J]. 岩矿测试, 2020, 39(3): 158-165. Tang X Y, Ni X F, Shang Z C. Effect and correction of iron in soil on accuracy of chromium determination by portable X-ray fluorescence spectrometry[J]. Rock and Mineral Analysis, 2020, 39(3): 158-165. |
[27] | 张学华, 李强, 黄雪华, 等. 手持式X射线荧光光谱仪在富钴结壳资源勘查中的应用[J]. 岩矿测试, 2014, 33(4): 512-516. Zhang X H, Li Q, Huang X H, et al. Application of handheld X-ray fluorescence spectrometer in the exploration of cobalt-rich crust resources[J]. Rock and Mineral Analysis, 2014, 33(4): 512-516. |
[28] | McComb J Q, Rogers C, Han F X, et al. Rapid screening of heavy metals and trace elements in environmental samples using portable X-ray fluorescence spectro-meter: A comparative study[J]. Water, Air & Soil Pollution, 2014, 225(12): 1-10. |
[29] | 周四春, 赵友清, 张玉环. 克服矿化不均匀效应的X荧光取样最佳测网[J]. 核技术, 2000, 23(9): 632-636. Zhou S C, Zhao Y Q, Zhang Y H. Best mesh for X-ray fluorescence sampling to overcome mineralization uneven effect[J]. Nuclear Technology, 2000, 23(9): 632-636. |
[30] | 张广玉, 赵世煌, 邓晃, 等. 手持式X射线荧光光谱多点测试技术在地质岩心和岩石标本预研究中的应用[J]. 岩矿测试, 2017, 36(5): 501-509. Zhang G Y, Zhao S H, Deng H, et al. Application of p-XRF multi-point analysis technique in pre-research of geological core and rock specimens[J]. Rock and Mineral Analysis, 2017, 36(5): 501-509. |
[31] | Ge L Q, Lai W C, Lin Y C. Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis[J]. X-ray Spectrometry, 2005, 34(1): 28-34. |
[32] | 张志鹏, 孙东, 曹楠, 等. 便携式XRF在快速评价矿区土壤修复效果中的应用探索[J]. 四川环境, 2019, 38(4): 156-160. Zhang Z P, Sun D, Cao N, et al. Application of portable XRF in rapid evaluation the effect of soil rehabilitation in mining areas[J]. Sichuan Environment, 2019, 38(4): 156-160. |
[33] | 赵霞, 郑景明, 司莉青, 等. 水分对于便携式X射线荧光光谱仪测定土壤中元素含量的影响[J]. 冶金分析, 2018, 38(7): 24-30. Zhao X, Zheng J M, Si L Q, et al. Influence of water content on the determination of elements in soil by portable X-ray fluorescence spectrometry[J]. Metallurgical Analysis, 2018, 38(7): 24-30. |
[34] | 周曙光, 廖世斌, 周可法, 等. 便携式X射线荧光光谱仪在岩石样品分析中的应用研究[J]. 岩矿测试, 2018, 37(1): 56-63. Zhou S G, Liao S B, Zhou K F, et al. Application of portable X-ray fluorescence spectrometer in the analysis of rock samples[J]. Rock and Mineral Analysis, 2018, 37(1): 56-63. |
[35] | 夏传波, 姜云, 郑建业, 等. X射线荧光光谱法测定地质样品中氯的含量[J]. 理化检验(化学分册), 2017, 53(7): 775-779. Xia C B, Jiang Y, Zheng J Y, et al. XRFS determination of chlorine in geological samples[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2017, 53(7): 775-779. |
[36] | 杜海燕, 赖万昌, 石希瑜, 等. 便携式X荧光仪检出限影响因素的研究[J]. 核技术, 2018, 41(1): 17-23. Du H Y, Lai W C, Shi X Y, et al. Influence factor of the detection limit of portable X-ray fluorescence instrument[J]. Nuclear Techniques, 2018, 41(1): 17-23. |
[37] | 陈宇亮, 郑洪波. XRF岩心扫描在第四纪沉积物研究中的应用[J]. 海洋地质前沿, 2014, 30(4): 51-59. Chen Y L, Zheng H B. The application of XRF core scanning to quatermaty sediments[J]. Marine Geology Frontiers, 2014, 30(4): 51-59. |
Effect of detection time on the stability of test results for elements
Relationship between the test time and relative uncertainty of elements with different concentrations
Effect of sample status on analytical results of elements
Comparison of Cu element analytical results obtained from on-site and laboratory
Primary halo profiles of Cu element and ore body distribution map