Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 5
Article Contents

Jing XUE, Shuai AN, Yin-fu WANG, Hui-li GAO, Jia-ming SHI. Determination of Selenium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Aqua Regia Digestion in Water Bath[J]. Rock and Mineral Analysis, 2020, 39(5): 720-725. doi: 10.15898/j.cnki.11-2131/td.202003050025
Citation: Jing XUE, Shuai AN, Yin-fu WANG, Hui-li GAO, Jia-ming SHI. Determination of Selenium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Aqua Regia Digestion in Water Bath[J]. Rock and Mineral Analysis, 2020, 39(5): 720-725. doi: 10.15898/j.cnki.11-2131/td.202003050025

Determination of Selenium in Soil by Inductively Coupled Plasma-Mass Spectrometry with Aqua Regia Digestion in Water Bath

  • OBJECTIVES With more and more attention being paid to selenium-rich products, the study on the determination of selenium content in soil has become more significant. The accurate determination is difficult due to the serious interference of the matrix effect and polyatomic ion when determining selenium in soil samples by inductively coupled plasma-mass spectrometry (ICP-MS). OBJECTIVES To establish a method for accurate determination of Se in soil. METHODS The content of selenium in soil samples was determined by ICP-MS with 50% aqua regia-boiling water digestion. Kinetic energy discrimination mode (KED) was adopted to eliminate mass spectrum interference, and the 103Rh element was selected as the internal standard for on-line addition to eliminate instrument signal drift. RESULTS The results of the analysis of certified soil standard materials were consistent with those of certified standard materials within the uncertainty. The results showed that the relative errors (REs) of this method were between -2.01% and 2.99%, the relative standard deviation (RSD) was less than 6.60%, the detection limit was 0.012μg/g, and the minimum quantitative detection limit was 0.048μg/g. The method was applied to analyze 20 soil samples, and the results were consistent with those obtained by national environmental protection standard HJ680-2013. Conclusion The study results are suitable for the determination of selenium in large numbers of soil samples from the geological industry.
  • 加载中
  • [1] 《岩石矿物分析》编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011.

    Google Scholar

    The editorial committee of <Rock and mineral analysis>. Rock and mineral analysis (The fourth edition:Vol.Ⅲ)[M].Beijing:Geological Publishing House, 2011.

    Google Scholar

    [2] 刘金巍, 刘雪松, 边超, 等.甲烷动态反应电感耦合等离子体质谱法测定地下水中痕量硒[J].岩矿测试, 2019, 38(1):85-91.

    Google Scholar

    Liu J W, Liu X S, Bian C, et al.Determination of trace selenium in groundwater by DRC ICP-MS[J].Rock and Mineral Analysis, 2019, 38(1):85-91.

    Google Scholar

    [3] 王俊伟, 钱蜀, 李海霞, 等.电感耦合等离子体质谱法测定土壤样品中的痕量硒元素[J].中国环境监测, 2012, 28(3):97-100.

    Google Scholar

    Wang J W, Qian S, Li H X, et al.Determination of trace selenium in soils by inductively coupled plasma-mass spectrometry[J].Environmental Monitoring in China, 2012, 28(3):97-100.

    Google Scholar

    [4] 钱薇, 唐昊冶, 王如海, 等.一次消解土壤样品测定汞、砷和硒[J].分析化学, 2017, 45(8):1215-1221.

    Google Scholar

    Qian W, Tang H Y, Wang R H, et al.Determination of mercury, arsenic and selenium in soils by one-time digestion[J].Chinese Journal of Analytical Chemistry, 2017, 45(8):1215-1221.

    Google Scholar

    [5] 谭芳维, 黄菲, 唐秀龙, 等.水浴消解-原子荧光法测定土壤中硒、锑的研究[J].广州化工, 2019, 47(6):103-105.

    Google Scholar

    Tan F W, Huang F, Tang X L, et al.Determination of selenium and antimony in soil by water bath digestion-atomic fluorescencel[J].Guangzhou Chemical Industry, 2019, 47(6):103-105.

    Google Scholar

    [6] 陈海英.王水水浴消解-双道原子荧光光谱法(AFS)同时测定土壤中的汞和硒[J].农业科技与装备, 2013, 10(10):13-15.

    Google Scholar

    Chen H Y.Simultaneous determination of mercury and selenium in soil with aqua regia digestion in water bath and double channel atomic fluorescence spectrometry (AFS)[J].Agricultural Science & Technology and Equipment, 2013, 10(10):13-15.

    Google Scholar

    [7] 林海兰, 朱日龙, 于磊, 等.水浴消解-原子荧光光谱法测定土壤和沉积物中砷、汞、硒、锑和铋[J].光谱学与光谱分析, 2020, 40(5):1528-1533.

    Google Scholar

    Lin H L, Zhu R L, Yu L, et al.Determination of arsenic, mercury, selenium, antimony and bismuth in soil and sediments by water bath digestion-atomic fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2020, 40(5):1528-1533.

    Google Scholar

    [8] 黄薇, 符式锦, 王旭日, 等.微波消解-ICP-MS测定土壤及植物中硒的含量[J].广州化工, 2014, 42(23):146-148.

    Google Scholar

    Huang W, Fu S J, Wang X R, et al.Determination of selenium in soil and plant by microwave digestion-ICP-MS[J].Guangzhou Chemical Industry, 2014, 42(23):146-148.

    Google Scholar

    [9] 刘芸, 曹国松, 程佩, 等.微波消解-ICP-MS法测定土壤中的硒含量[J].化学与生物工程, 2017, 34(11):67-70.

    Google Scholar

    Liu Y, Cao G S, Cheng P, et al.Determination of selenium content in soil by microwave digestion-ICP-MS[J].Chemistry & Bioengineering, 2017, 34(11):67-70.

    Google Scholar

    [10] 田敏, 刘畅.两种消解土壤中硒的方法对比分析[J].黑龙江环境通报, 2007, 31(3):33-34.

    Google Scholar

    Tian M, Liu C.Comparative analysis of two digestion method of selenium in soil[J].Heilongjiang Environmental Journal, 2007, 31(3):33-34.

    Google Scholar

    [11] 屈明华, 陈雄弟, 倪张林, 等.DRC-ICP-MS法测定土壤硒前处理方法研究[J].土壤通报, 2019, 50(3):698-703.

    Google Scholar

    Qu M H, Chen X D, Ni Z L, et al.Pretreatment for determination of soil selenium by ICP-MS with dynamic reaction cell[J].Chinese Journal of Soil Science, 2019, 50(3):698-703.

    Google Scholar

    [12] 严进.双氧水氧化1-(2-吡啶偶氮)-2-萘酚动力学光度法测定痕量硒[J].广州化工, 2016, 44(21):132-134.

    Google Scholar

    Yan J.Determination of selenium by catalytic kinetic spectrophotometry in hydrogen peroxide-PAN system[J].Guangzhou Chemical Industry, 2016, 44(21):132-134.

    Google Scholar

    [13] 韩亚, 郭伟, 汪洪.电感耦合等离子体质谱(ICP-MS)法与氢化物发生-原子吸收光谱(HG-AAS)法测定土壤中硒含量的对比研究[J].中国无机分析化学, 2020, 10(3):28-32.

    Google Scholar

    Han Y, Guo W, Wang H.Method comparison for determination of selenium in soil by ICP-MS and HG-AAS[J].Chinese Journal of Inorganic Analytical Chemistry, 2020, 10(3):28-32.

    Google Scholar

    [14] 冯永明, 邢应香, 刘洪青, 等.微波消解-电感耦合等离子体质谱法测定生物样品中微量硒的方法研究[J].岩矿测试, 2014, 33(1):34-39.

    Google Scholar

    Feng Y M, Xing Y X, Liu H Q, et al.Determination of trace selenium in biological samples by inductively coupled plasma-mass spectrometry with microwave digestion[J]. Rock and Mineral Analysis, 2014, 33(1):34-39.

    Google Scholar

    [15] 程秀花, 王海蓉, 黎卫亮, 等.电感耦合等离子体质谱法测定硒时多元素干扰的碰撞/反应研究及其在地质样品中的应用[J].冶金分析, 2015, 35(12):5-9.

    Google Scholar

    Cheng X H, Wang H R, Li W L, et al.Study on collision/reaction for multielement interference in determination of selenium by inductively coupled plasma mass spectrometry and its application to geological sample[J].Metallurgical Analysis, 2015, 35(12):5-9.

    Google Scholar

    [16] 徐鹏, 孙亚莉.Carius管密封溶样-等离子体质谱法测定环境样品中镓、锗、砷、硒、镉、锡、锑、碲、汞、铅和铋[J].分析化学, 2010, 38(4):581-584.

    Google Scholar

    Xu P, Sun Y L.Determination of Ga, Ge, As, Se, Cd, Sn, Sb, Te, Hg, Pb and Bi in environmental samples by inductively coupled plasma mass spectrometry combined with Carius tube digestion[J].Chinese Journal of Analytical Chemistry, 2010, 38(4):581-584.

    Google Scholar

    [17] D'Ilio S, Violante N, Majorani C, et al.Dynamic reaction cell ICP-MS for determination of total As, Cr, Se and Ⅴ in complex matrices:Still a challenge?A review[J].Analytica Chimica Acta, 2011, 698(1):6-13.

    Google Scholar

    [18] 陈波, 刘洪青, 邢应香.电感耦合等离子体质谱法同时测定地质样品中锗硒碲[J].岩矿测试, 2014, 33(2):192-196.

    Google Scholar

    Chen B, Liu H Q, Xing Y X.Simultaneous determination of Ge, Se and Te in geological samples by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(2):192-196.

    Google Scholar

    [19] 刘征宙, 曹丽丽, 陈浩云, 等.电感耦合等离子体质谱法-碰撞反应池技术测定高纯度磷酸二氢钾中痕量金属元素[J].化学试剂, 2015, 37(9):809-811, 842.

    Google Scholar

    Liu Z Z, Cao L L, Chen H Y, et al.Detection of trace metal elements in potassium dihydrophate with ICP-MS(CCT) method[J].Chemical Reagents, 2015, 37(9):809-811, 842.

    Google Scholar

    [20] 余兴.电感耦合等离子体四极杆质谱碰撞/反应池技术现状与进展[J].冶金分析, 2013, 33(3):14-23.

    Google Scholar

    Yu X.The present situation and advance in collision/reaction cell technique of inductively coupled plasma quadrupole mass spectrometry[J].Metallurgical Analysis, 2013, 33(3):14-23.

    Google Scholar

    [21] 章连香, 冯先进.八极杆碰撞/反应池(ORS) -电感耦合等离子体质谱(ICP-MS)法测定复杂矿物中的稀土元素[J].中国无机分析化学, 2017, 7(2):22-26.

    Google Scholar

    Zhang L X, Feng X J.Determination of rare earth elements in complex minerals by octopole reaction system (ORS)-inductively coupled plasma mass spectrometry (ICP-MS)[J].Chinese Journal of Inorganic Analytical Chemistry, 2017, 7(2):22-26.

    Google Scholar

    [22] 韩建华, 孙传强, 汪曣, 等.电感耦合等离子体质谱中碰撞反应池的模拟探讨[J].冶金分析, 2014, 34(9):1-7.

    Google Scholar

    Han J H, Sun C Q, Wang Y, et al.Discussion on the simulation of collision reaction cell in inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2014, 34(9):1-7.

    Google Scholar

    [23] 陕红, 孙宝利, 黄金丽, 等.DRC-ICP-MS测定蜂王浆中硒的方法研究[J].分析测试学报, 2016, 35(9):1191-1194.

    Google Scholar

    Shan H, Sun B L, Huang J L, et al.Analysis of selenium in royal jelly by ICP-MS with dynamic reaction cell[J].Journal of Instrumental Analysis, 2016, 35(9):1191-1194.

    Google Scholar

    [24] 杏朝刚, 袁京群, 李士敏.微波消解-动态反应池电感耦合等离子体质谱测定农产品中的痕量硒[J].浙江农业学报, 2018, 30(8):1414-1419.

    Google Scholar

    Xing C G, Yuan J Q, Li S M.Determination of trace selenium in agricultural products with microwave digestion-dynamic reaction cell inductively coupled plasma mass spectrometry[J].Acta Agriculturae Zhejianggensis, 2018, 30(8):1414-1419.

    Google Scholar

    [25] 徐进力, 邢夏, 唐瑞玲, 等.动能歧视模式ICP-MS测定地球化学样品中14种痕量元素[J].岩矿测试, 2019, 38(4):394-402.

    Google Scholar

    Xu J L, Xing X, Tang R L, et al.Determination of 14 trace elements in geochemical samples by ICP-MS using kinetic energy discrimination mode[J].Rock and Mineral Analysis, 2019, 38(4):394-402.

    Google Scholar

    [26] 黄子敬, 陈孟君, 邓华阳, 等.微波消解-ICP-MS混合模式测定动植物源食品中11种金属元素[J].分析试验室, 2017, 36(1):24-28.

    Google Scholar

    Huang Z J, Chen M J, Deng H Y, et al.Determination of 11 trace elements in animal and plant origin food by microwave digestion with ICP-MS in mixed mode[J].Chinese Journal of Analysis Laboratory, 2017, 36(1):24-28.

    Google Scholar

    [27] 林珍, 黄超冠, 卢燕平, 等.沸水浴-氢化物发生原子荧光光谱法测定土壤中的硒[J].广州化学, 2017, 42(3):34-37.

    Google Scholar

    Lin Z, Huang C G, Lu Y P, et al.Boilingwater bath-determination of selenium in soil by hydride generation atomic fluorescence spectrometry[J].Guangzhou Chemistry, 2017, 42(3):34-37.

    Google Scholar

    [28] 郑欣.X Series 2 ICP-MS CCTED在食品样品超痕量元素分析中的应用[J].环境化学, 2009, 28(3):467-468.

    Google Scholar

    Zheng X.Application of X Series 2 ICP-MS CCTED in analysis of ultra-trace elements of food samples[J].Environmental Chemistry, 2009, 28(3):467-468.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(3)

Article Metrics

Article views(3148) PDF downloads(336) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint