[1] |
Zhan H, Jiang Y, Yuan J, et al.Trace metal pollution in soil and wild plants from lead-zinc smelting areas in Huixian County, Northwest China[J].Journal of Geochemical Exploration, 2014.147:182-188. doi: 10.1016/j.gexplo.2014.10.007
CrossRef Google Scholar
|
[2] |
Yıldırım G, Tokalıoǧlu Ş. Heavy metal speciation in various grain sizes of industrially contaminated street dust using multivariate statistical analysis[J].Ecotoxicology and Environmental Safety, 2016, 124:369-376. doi: 10.1016/j.ecoenv.2015.11.006
CrossRef Google Scholar
|
[3] |
Sungur A, Soylak M, Yilmaz E, et al.Characterization of heavy metal fractions in agricultural soils by sequential extraction procedure:The relationship between soil properties and heavy metal fractions[J].Soil and Sediment Contamination:An International Journal, 2015, 24(1):1-15. doi: 10.1080/15320383.2014.907238
CrossRef Google Scholar
|
[4] |
Nolan A L, Baltpurvins K A, Hamilton I C, et al.Chemostat-controlled selective leaches of model soil phases-The hydrous manganese and iron oxides.Part 2:Re-adsorption studies[J].Geochemistry-Exploration Environment Analysis, 2003, 3(4):313-320. doi: 10.1144/1467-7873/03-015
CrossRef Google Scholar
|
[5] |
la Colla N S, Domini C E, Marcovecchio J E, et al.Latest approaches on green chemistry preconcentration methods for trace metal determination in seawater-A review[J].Journal of Environmental Management, 2015, 151:44-55. doi: 10.1016/j.jenvman.2014.11.030
CrossRef Google Scholar
|
[6] |
Concas S, Ardau C, di Bonito M, et al.Field sampling of soil pore water to evaluate the mobile fraction of trace elements in the Iglesiente area (SW Sardinia, Italy)[J].Journal of Geochemical Exploration, 2015, 158:82-94. doi: 10.1016/j.gexplo.2015.07.006
CrossRef Google Scholar
|
[7] |
王畅, 郭鹏然, 陈杭亭, 等.土壤和沉积物中重金属生物可利用性的评估[J].岩矿测试, 2009, 28(2):108-112.
Google Scholar
Wang C, Guo P R, Chen H T, et al.Evaluation of bioavailability of heavy metals in soils and sediments[J].Rock and Mineral Analysis, 2009, 28(2):108-112.
Google Scholar
|
[8] |
Zhang W, Ming Q, Shi Z, et al.Lake sediment records on climate change and human activities in the Xingyun Lake catchment, SW China[J].PLoS One, 2014, 9(7):e102167 doi: 10.1371/journal.pone.0102167
CrossRef Google Scholar
|
[9] |
Serrano O, Mateo M, Dueñas-Bohórquez A, et al.The Posidonia oceanica marine sedimentary record:A Holocene archive of heavy metal pollution[J].Science of the Total Environment, 2011, 409(22):4831-4840. doi: 10.1016/j.scitotenv.2011.08.001
CrossRef Google Scholar
|
[10] |
Moldenhauer K, Zielhofer C, Faust D, et al.Heavy metals as indicators for Holocene sediment provenance in a semi-arid Mediterranean catchment in northern Tunisia[J].Quaternary International, 2008, 189(1):129-134. doi: 10.1016/j.quaint.2007.09.006
CrossRef Google Scholar
|
[11] |
王亚平, 鲍征宇.恬矿库周围土壤中重金属存在形态特征研究[J].岩矿测试, 2000, 19(1):7-13.
Google Scholar
Wang Y P, Bao Z Y.Study on characteristics of heavy metal species in the soils near the tailings[J].Rock and Mineral Analysis, 2000, 19(1):7-13.
Google Scholar
|
[12] |
王晓春, 路国慧, 刘晓端, 等.沈阳细河沿岸土壤中重金属垂直分布特征与形态分析[J].岩矿测试, 2010, 29(2):97-103.
Google Scholar
Wang X C, Lu G H, Liu X D, et al.Vertical distribution characteristics and speciation analysis of heavy metals in top-soils around Xihe River of Shenyang[J].Rock and Mineral Analysis, 2010, 29(2):97-103.
Google Scholar
|
[13] |
卢少勇, 焦伟, 金相灿, 等.滇池内湖滨带沉积物中重金属形态分析[J].中国环境科学, 2010, 30(4):487-492.
Google Scholar
Lu S Y, Jiao W, Jin X C, et al.Speciation of heavy metals in sediments from inner lakeside belt of Lake Dianchi[J].China Environmental Science, 2010, 30(4):487-492.
Google Scholar
|
[14] |
张婷, 刘爽, 宋玉梅, 等.柘林湾海水养殖区底泥中重金属生物有效性及生态风险评价[J].环境科学学报, 2019, 39(3):60-69.
Google Scholar
Zhang T, Liu S, Song Y M, et al.Bioavailability and ecological risk assessment of heavy metals in sediments of marine aquaculture in Zhelin Bay[J].Acta Scientiae Circumstantiae, 2019, 39(3):60-69.
Google Scholar
|
[15] |
孙丽娜, 李玉双, 李昕馨, 等.根际环境锌镉镍的形态变化与植物有效性[J].岩矿测试, 2007, 26(4):257-263.
Google Scholar
Sun L N, Li Y S, Li X X, et al.Speciation variation and zinc, cadmium, nickel phyto-availability of in rhizosphere soils[J].Rock and Mineral Analysis, 2007, 26(4):257-263.
Google Scholar
|
[16] |
Dalal R, Henry R.Simultaneous determination of moisture, organic carbon, and total nitrogen by near infrared reflectance spectrophotometry[J].Soil Science Society of America Journal, 1986, 50(1):120-123. doi: 10.2136/sssaj1986.03615995005000010023x
CrossRef Google Scholar
|
[17] |
Grzegorz S, Mccarty G W, Stuczynski T I, et al.Near- and mid-infrared diffuse reflectance spectroscopy for measuring soil metal content[J]. Journal of Environmental Quality, 2004, 33(6):2056-2069. doi: 10.2134/jeq2004.2056
CrossRef Google Scholar
|
[18] |
Malley D, Williams P.Use of near-infrared reflectance spectroscopy in prediction of heavy metals in freshwater sediment by their association with organic matter[J].Environmental Science & Technology, 1997, 31(12):3461-3467.
Google Scholar
|
[19] |
Malley D F.Near-infrared spectroscopy as a potential method for routine sediment analysis to improve rapidity and efficiency[J].Water Science and Technology, 1998, 37(6-7):181-188. doi: 10.2166/wst.1998.0751
CrossRef Google Scholar
|
[20] |
Moros J, Barciela-Alonso M C, Pazos-Capeáns P, et al.Characterization of estuarine sediments by near infrared diffuse reflectance spectroscopy[J].Analytica Chimica Acta, 2008, 624(1):113-127. doi: 10.1016/j.aca.2008.06.030
CrossRef Google Scholar
|
[21] |
Ibrahim M, Hameed A J, Jalbout A.Molecular spectroscopic study of River Nile sediment in the greater Cairo region[J].Applied Spectroscopy, 2008, 62(3):306-311. doi: 10.1366/000370208783759795
CrossRef Google Scholar
|
[22] |
李淑敏, 李红, 孙丹峰, 等.利用光谱技术分析北京地区农业土壤重金属光谱特征[J].土壤通报, 2011(3):224-229.
Google Scholar
Li S M, Li H, Sun D F, et al.Characteristic and diagnostic bands of heavy metals in Beijing agricultural soils based on spectroscopy[J].Chinese Journal of Soil Science, 2011(3):224-229.
Google Scholar
|
[23] |
王哲, 聂亚光, 陈倩倩, 等.基于近红外光谱快速分析东南极湖泊沉积物化学元素含量[J].极地研究, 2016, 28(3):317-323.
Google Scholar
Wang Z, Nie Y G, Chen Q Q, et al.Rapid analysis on contents of chemical elements in pond sediments from East Antarctica using near-infrared spectroscopy[J]. Chinese Journal of Polar Research, 2016, 28(3):317-323.
Google Scholar
|
[24] |
王冬, 马智宏, 王纪华, 等.土壤金属元素近红外光谱定量校正模型适应性初步研究[J].光谱学与光谱分析, 2017, 37(4):1086-1089.
Google Scholar
Wang D, Ma Z H, Wang J H, et al.Preliminary research on the adaptability of NIR quantitative calibration models for metal elements in soil[J].Spectroscopy and Spectral Analysis, 2017, 37(4):1086-1089.
Google Scholar
|
[25] |
Xia X Q, Chen J, Ma H R, et al.Assessment of cadmium contamination in the sediments of Changjiang (Yangtze) River by reflectance spectroscopy[J]. Chinese Journal of Geochemistry, 2006, 25(Supplement):226.
Google Scholar
|
[26] |
Xia X Q, Mao Y Q, Ji J F, et al.Reflectance spectroscopy study of Cd contamination in the sediments of the Changjiang River, China[J].Environmental Science & Technology, 2007, 41(10):3449-3454.
Google Scholar
|
[27] |
吕宪国, 王起超, 刘吉平.湿地生态环境影响评价初步探讨[J].生态学杂志, 2004, 23(1):83-85.
Google Scholar
Lü X G, Wang Q C, Liu J P.Primary study on impact assessment of wetland ecological environment[J].Chinese Journal of Ecology, 2004, 23(1):83-85.
Google Scholar
|
[28] |
Job T, Penny D, Hua Q.Metal enrichment in estuarine sediments proximal to acid sulfate soils as a novel palaeodrought proxy[J].Science of the Total Environment, 2018, 612:247-256. doi: 10.1016/j.scitotenv.2017.08.157
CrossRef Google Scholar
|
[29] |
Ghosh D, Routh J, Bhadury P.Sub-surface biogeochemical characteristics and its effect on arsenic cycling in the holocene gray sand aquifers of the Lower Bengal Basin[J].Frontiers in Environmental Science, 2017, 5:82. doi: 10.3389/fenvs.2017.00082
CrossRef Google Scholar
|
[30] |
王苏民, 窦鸿身.中国湖泊志[M].北京:科学出版社, 1998.
Google Scholar
Wang S M, Dou H S.Records of lakes in China[M].Beijing:Science Press, 1998.
Google Scholar
|
[31] |
Kooistra L, Wehrens R, Leuven R, et al.Possibilities of visible-near-infrared spectroscopy for the assessment of soil contamination in river flood plains[J].Analytica Chimica Acta, 2001, 446(1-2):97-105. doi: 10.1016/S0003-2670(01)01265-X
CrossRef Google Scholar
|
[32] |
Groenenberg J E, Römkens P F, Zomeren A V, et al.Evaluation of the single dilute (0.43M) nitric acid extraction to determine geochemically reactive elements in soil[J].Environmental Science & Technology, 2017, 51(4):2246-2253.
Google Scholar
|
[33] |
Stenberg B, Rossel R A V, Mouazen A M, et al.Visible and near infrared spectroscopy in soil science in advances in agronomy[M].Elsevier, 2010:163-215.
Google Scholar
|
[34] |
Awiti A O, Walsh M G, Shepherd K D, et al.Soil condition classification using infrared spectroscopy:A proposition for assessment of soil condition along a tropical forest-cropland chronosequence[J].Geoderma, 2008, 143(1-2):73-84. doi: 10.1016/j.geoderma.2007.08.021
CrossRef Google Scholar
|
[35] |
Chang C W, Laird D A, Mausbach M J, et al.Near-infrared reflectance spectroscopy-principal components regression analyses of soil properties[J].Soil Science Society of America Journal, 2001, 65(2):480-490. doi: 10.2136/sssaj2001.652480x
CrossRef Google Scholar
|
[36] |
Luce M S, Ziadi N, Gagnon B, et al.Visible near infrared reflectance spectroscopy prediction of soil heavy metal concentrations in paper mill biosolid- and liming by-product-amended agricultural soils[J].Geoderma, 2017, 288:23-36. doi: 10.1016/j.geoderma.2016.10.037
CrossRef Google Scholar
|
[37] |
Moros J, Cassella R J, Barciela-Alonso M C, et al.Estuarine sediment quality assessment by Fourier-transform infrared spectroscopy[J].Vibrational Spectroscopy, 2010, 53(2):204-213. doi: 10.1016/j.vibspec.2010.03.001
CrossRef Google Scholar
|
[38] |
Hawkins D M.The problem of overfitting[J].Journal of Chemical Information and Computer Sciences, 2004, 44(1):1-12.
Google Scholar
|
[39] |
Gowen A, Downey G, Esquerre C, et al.Preventing over-fitting in PLS calibration models of near-infrared (NIR) spectroscopy data using regression coefficients[J].Journal of Chemometrics, 2011, 25(7):375-381. doi: 10.1002/cem.1349
CrossRef Google Scholar
|
[40] |
Faber N, Rajko R.How to avoid over-fitting in multi-variate calibration-The conventional validation approach and an alternative[J].Analytica Chimica Acta, 2007, 595(1-2):98-106. doi: 10.1016/j.aca.2007.05.030
CrossRef Google Scholar
|
[41] |
Echeverria J, Morera M, Mazkiaran C, et al.Competitive sorption of heavy metal by soils.Isotherms and fractional factorial experiments[J].Environmental Pollution, 1998, 101(2):275-284. doi: 10.1016/S0269-7491(98)00038-4
CrossRef Google Scholar
|
[42] |
Uddin M K.A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade[J].Chemical Engineering Journal, 2017, 308:438-462. doi: 10.1016/j.cej.2016.09.029
CrossRef Google Scholar
|
[43] |
张金池, 姜姜, 朱丽珺, 等.黏土矿物中重金属离子的吸附规律及竞争吸附[J].生态学报, 2007, 27(9):273-281.
Google Scholar
Zhang J C, Jiang J, Zhu L J, et al.Adsorption and competitive adsorption of heavy metal ion by clay mineral[J].Acta Ecologica Sinica, 2007, 27(9):273-281.
Google Scholar
|
[44] |
Wu C Y, Jacobson A R, Laba M, et al.Surrogate correlations and near-infrared diffuse reflectance sensing of trace metal content in soils[J].Water, Air, & Soil Pollution, 2010, 209(1-4):377-390.
Google Scholar
|
[45] |
Li X X, Zhang P X, Bo S.Visible and near-infrared diffuse reflectance spectroscopy for prediction of soil properties near a copper smelter[J].Pedosphere, 2012, 22(3):351-366. doi: 10.1016/S1002-0160(12)60022-8
CrossRef Google Scholar
|
[46] |
Gholizadeh A, Boruvka L, Vašát R, et al.Estimation of potentially toxic elements contamination in anthropogenic soils on a brown coal mining dumpsite by reflectance spectroscopy:A case study[J].PloS One, 2015, 10(2):e0117457. doi: 10.1371/journal.pone.0117457
CrossRef Google Scholar
|
[47] |
Vávrová P, Stenberg B, Karsisto M, et al.Near infrared reflectance spectroscopy for characterization of plant litter quality: Towards a simpler way of predicting carbon turnover in Peatlands?[M]//Wastewater treatment, plant dynamics and management in constructed and natural wetlands.Springer, 2008: 65-87.
Google Scholar
|
[48] |
Clark R N.Spectroscopy of rocks and minerals, and prin-ciples of spectroscopy[J].Manual of Remote Sensing, 1999, 3:3-58.
Google Scholar
|
[49] |
Rossel R V, Behrens T.Using data mining to model and interpret soil diffuse reflectance spectra[J].Geoderma, 2010, 158(1-2):46-54. doi: 10.1016/j.geoderma.2009.12.025
CrossRef Google Scholar
|
[50] |
Todorova M, Mouazen A M, Lange H, et al.Potential of near-infrared spectroscopy for measurement of heavy metals in soil as affected by calibration set size[J].Water Air and Soil Pollution, 2014, 225(8):2036-2054. doi: 10.1007/s11270-014-2036-4
CrossRef Google Scholar
|
[51] |
Chattoraj S L, Banerjee S, van der Meer F, et al.Application of visible and infrared spectroscopy for the evaluation of evolved glauconite[J].International Journal of Applied Earth Observation and Geoinformation, 2018, 64:301-310. doi: 10.1016/j.jag.2017.02.007
CrossRef Google Scholar
|
[52] |
Hubbard A T.Encyclopedia of surface and colloid science[M].CRC Press, 2002.
Google Scholar
|
[53] |
王锐, 张风雷, 徐姝姝, 等.土壤重金属污染风险筛选值划分方法:以Cd为例[J].环境科学, 2019, 40(11):5082-5089.
Google Scholar
Wang R, Zhang F L, Xu S S, et al.Method of dividing the value of soil heavy metal pollution risk screening:Using Cd as an example[J].Environmental Science, 2019, 40(11):5082-5089.
Google Scholar
|
[54] |
冯小平, 王义东, 郭长城, 等.长期垦殖与退化对七里海芦苇沼泽土壤盐分的影响[J].湿地科学, 2014, 12(3):388-394.
Google Scholar
Feng X P, Wang Y D, Guo C C, et al.Effects of long-term reclamation and degradation on soil salinity of phragraites australis marshes in Qilihai wetlands[J].Wetland Science, 2014, 12(3):388-394.
Google Scholar
|
[55] |
李金辉, 丁薇, 翁贵英, 等.明湖国家湿地公园10种水生植物的重金属富集特征[J].水生态学杂志, 2020, 41(1):86-91.
Google Scholar
Li J H, Ding W, Weng G Y, et al.Heavy metal accumulation by ten aquatic plant species in Minghu national wetland park[J].Journal of Hydroecology, 2020, 41(1):86-91.
Google Scholar
|