Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 4
Article Contents

Ji-yan WANG, Jia-zhen HU, Han-duo DING, Li-feng CAO, Ming-wei ZHANG, Fan ZHANG, Jie HUANG, Wen-sheng YAO. Determination of Gold Mobile Fraction in Deep-penetrating Geochemical Samples by ICP-MS with Pre-extraction[J]. Rock and Mineral Analysis, 2020, 39(4): 525-534. doi: 10.15898/j.cnki.11-2131/td.201909300142
Citation: Ji-yan WANG, Jia-zhen HU, Han-duo DING, Li-feng CAO, Ming-wei ZHANG, Fan ZHANG, Jie HUANG, Wen-sheng YAO. Determination of Gold Mobile Fraction in Deep-penetrating Geochemical Samples by ICP-MS with Pre-extraction[J]. Rock and Mineral Analysis, 2020, 39(4): 525-534. doi: 10.15898/j.cnki.11-2131/td.201909300142

Determination of Gold Mobile Fraction in Deep-penetrating Geochemical Samples by ICP-MS with Pre-extraction

More Information
  • BACKGROUNDThe geochemical exploration for gold deposits is based on the accurate determination of gold. The content of gold in geochemical samples is usually at the level of ng/g, which needs to be preconcentrated before determination by inductively coupled plasma-mass spectrometry (ICP-MS) or graphite furnace absorption spectroscopy (GFAAS). At present, the exploration of buried deposits is the frontier of geochemical exploration technology and the extraction of gold mobile fraction is one of the most effective approaches to find concealed gold deposits. Compared with whole rock gold analysis, the gold mobile fraction content is much lower, which requires specific leaching, efficient preconcentration and accurate determination. OBJECTIVESTo selectively extract gold mobile fraction and find surface secondary anomaly information for exploring concealed ore bodies. METHODSExperiments were carried out on the extraction agent and determination of gold mobile fraction by ICP-MS. Ammonium citrate was used to promote the disassociation of the adsorption of exchangeable form gold from the surface of clay minerals and secondary minerals in the soil. The complexation of thiourea and sodium thiosulfate was applied to diffuse the extracted gold into the solution to achieve the purpose of selective extraction. The procedure for gold preconcentration from extraction solution and the ICP-MS determination method were established. RESULTSThe experiments determined that the extractant was composed of 5g/L ammonium citrate, 2g/L thiourea, and 5g/L sodium thiosulfate. The extraction time was 24h, and the active carbon was used to preconcentrate gold in the acidic thiourea medium. The gold adsorption rates were 89.6%-109.2%, and the ashing temperature of the concentration materials were 650-700℃. The detection limit of the method was 0.05ng/g, the relative standard deviations (RSDs) ranged from 9.4% to 10.2%, and the recoveries were from 91.2% to 93.4%. CONCLUSIONSCompared with the published method, extraction with ferric sulfate-thiourea-sodium thiosulfate solution and determination by GFAAS, this method has the advantages of low detection limit, wide linear range and fast analysis. This method has been successfully applied in the geochemical exploration of gold deposits in the forest swamp landscape area of Dongan, Heilongjiang Province. Gold anomaly delineated is consistent with the location of the concealed gold deposit.
  • 加载中
  • [1] 郭林中, 韦瑞杰, 王海潮, 等.改性活性炭的制备及其对金吸附性能的研究[J].岩矿测试, 2014, 33(4):528-534.

    Google Scholar

    Guo L Z, Wei R J, Wang H C, et al.Study on preparation and Au(Ⅲ) adsorption ability of nitric acid modified activated carbon[J].Rock and Mineral Analysis, 2014, 33(4):528-534.

    Google Scholar

    [2] 马怡飞, 汪广恒, 张尼, 等.乙醇介质制备载炭泡塑及其在地质样品金测定中的应用[J].岩矿测试, 2018, 37(5):533-540.

    Google Scholar

    Ma Y F, Wang G H, Zhang N, et al.Application of carbon-loaded polyurethane foam produced by ethanol media in determination of gold in geological samples[J].Rock and Mineral Analysis, 2018, 37(5):533-540.

    Google Scholar

    [3] 张洁, 阳国运.电感耦合等离子体质谱法测定金矿石中金[J].冶金分析, 2018, 38(11):18-23.

    Google Scholar

    Zhang J, Yang G Y.Determination of gold in gold ore by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2018, 38(11):18-23.

    Google Scholar

    [4] 邢夏, 徐进力, 陈海杰, 等.抗坏血酸为基体改进剂石墨炉原子吸收光谱法测定金矿区植物样品中的痕量金[J].岩矿测试, 2015, 34(3):319-324.

    Google Scholar

    Xing X, Xu J L, Chen H J, et al.Determination of trace gold in plant samples from a gold mining area by graphite furnace atomic absorption spectrometry with ascorbic acid as the matrix modifier[J].Rock and Mineral Analysis, 2015, 34(3):319-324.

    Google Scholar

    [5] Mann A W.Strong versus weak digestion:Ligand based soil extraction geochemistry[J].Geochemistry:Exploration, Environment, Analysis, 2010, 10(1):17-26. doi: 10.1144/1467-7873/09-216

    CrossRef Google Scholar

    [6] 孟贵祥, 吕庆田, 严加永, 等."穿透性"探测技术在覆盖区地质矿产调查中的应用研究[J].地球学报, 2019, 40(5):637-650.

    Google Scholar

    Meng G X, Lü Q T, Yan J Y, et al.The research and application of explorational technology of "penetrating" to geology and mineral investigation in overburden area[J].Acta Geoscientica Sinica, 2019, 40(5):637-650.

    Google Scholar

    [7] 鲁美, 叶荣, 张必敏, 等.覆盖区地球化学勘查进展[J].矿床地质, 2019, 38(6):1408-1411.

    Google Scholar

    Lu M, Ye R, Zhang B M, et al.The development of geochemical exploration in the covered area[J].Mineral Deposits, 2019, 38(6):1408-1411.

    Google Scholar

    [8] 徐洋.覆盖区隐伏矿地球化学弱信息提取技术研究[D].北京: 中国地质大学(北京), 2015.

    Google Scholar

    Xu Y.The geochemical methods to extract the weak geochemical signals from concealed deposits[D].Beijing: China University of Geosciences (Beijing), 2015.

    Google Scholar

    [9] 徐善法, 刘汉彬, 王玮, 等.深穿透地球化学方法在十红滩砂岩型铀矿中的试验研究[J].物探与化探, 2017, 42(2):189-193.

    Google Scholar

    Xu S F, Liu H B, Wang W, et al.An experimental study of deep penetration geochemical technology in the Shihongtan uranium deposit[J].Geophysical and Geochemical Exploration, 2017, 42(2):189-193.

    Google Scholar

    [10] Xie X J, Lu Y X, Yao W S, et al.Further study on deep penetrating geochemistry over the spence porphyry copper deposit, Chile[J].Earth Science Frontiers, 2011, 2(3):303-311.

    Google Scholar

    [11] Wang X Q, Zhang B M, Lin X, et al.Geochemical challenges of diverse regolith-covered terrains for mineral exploration in China[J].Ore Geology Reviews, 2016, 73(3):417-431.

    Google Scholar

    [12] 姚文生.元素活动态提取剂机理及实验条件研究[D].北京: 中国地质科学院, 2011: 24-36.

    Google Scholar

    Yao W S. Leaching mechanism and conditions of extractants on mobile forms of elements in soils[D].Beijing: Chinese Academy of Geological Sciences, 2011: 24-36.

    Google Scholar

    [13] Williams T M, Gunn A G.Application of enzyme leach soil analysis for epithermal gold exploration in the Andes of Ecuador[J].Applied Geochemistry, 2002, 17(4):367-385.

    Google Scholar

    [14] 叶信栋, 孙彬彬, 周国华.河北蔡家营铅锌多金属矿地电化学提取有效性及提取条件试验[J].地质与勘探, 2018, 54(5):979-987.

    Google Scholar

    Ye X D, Sun B B, Zhou G H. Effectiveness and conditions tests of geo-electrochemical extraction in the Caijiaying Pb-Zn polymetallic mining area[J].Geology and Exploration, 2018, 54(5):979-987.

    Google Scholar

    [15] Lu M, Ye R, Wang Z K, et al.Geogas prospecting for buried deposits under loess overburden:Taking Shenjiayao gold deposit as an example[J].Journal of Geochemical Exploration, 2019, 197:122-129. doi: 10.1016/j.gexplo.2018.11.015

    CrossRef Google Scholar

    [16] Sadeghi M, Albanese S, Morris G, et al.REE concen-trations in agricultural soil in Sweden and Italy:Comparison of weak MMI® extraction with near total extraction data[J].Applied Geochemistry, 2015, 63:22-36. doi: 10.1016/j.apgeochem.2015.07.004

    CrossRef Google Scholar

    [17] Birrell R D, Fedikow M A, Mann A W, et al.Vertical ionic migration:Mechanisms, soil anomalies, and sampling depth for mineral exploration[J].Geochemistry:Exploration, Environment, Analysis, 2005, 5(3):201-210. doi: 10.1144/1467-7873/03-045

    CrossRef Google Scholar

    [18] 王学求, 张必敏, 叶荣.纳米地球化学与覆盖区矿产勘查[J].矿物岩石地球化学通报, 2016, 35(1):43-51.

    Google Scholar

    Wang X Q, Zhang B M, Ye R.Nanogeochemistry for mineral exploration through covers[J].Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(1):43-51.

    Google Scholar

    [19] 毛永新.黑龙江金厂金矿Ⅻ号矿体金活动态地球化学测量应用研究[D].长春: 吉林大学, 2014.

    Google Scholar

    Mao Y X.Study on the application of MOMEO geochemical survey in Ⅻ ore body of Jinchang gold deposit, Heilongjiang Province[D].Changchun: Jilin University, 2014.

    Google Scholar

    [20] 白金峰, 卢荫庥, 文雪琴.金的活动态分析方法及其应用[J].物探与化探, 2006, 30(5):410-413.

    Google Scholar

    Bai J F, Lu Y X, Wen X Q.The analytical method for mobile forms of gold and its application[J].Geophysical and Geochemical Exploration, 2006, 30(5):410-413.

    Google Scholar

    [21] 赵伟, 王玉林, 钟莅湘, 等.土壤样品中贵金属活动态提取技术[J].岩矿测试, 2010, 29(3):212-216.

    Google Scholar

    Zhao W, Wang Y L, Zhong L X, et al.Exreaction and determination method for mobile forms of precious metals in soil samples[J].Rock and Mineral Analysis, 2010, 29(3):212-216.

    Google Scholar

    [22] 徐进力, 邢夏, 张鹏鹏, 等.元素活动态提取条件和分析方法的应用研究[J].地质学报, 2020, 94(3):982-990.

    Google Scholar

    Xu J L, Xing X, Zhang P P, et al.Application research on extraction conditions and analysis methods of active state elements[J].Acta Geologica Sinica, 2020, 94(3):982-990.

    Google Scholar

    [23] 曹立峰, 王敏捷, 申硕果, 等.活动态提取-电感耦合等离子体质谱法测定栾川矿集区深穿透地球化学样品中铜铅锌钨钼[J].岩矿测试, 2015, 34(4):424-429.

    Google Scholar

    Cao L F, Wang M J, Shen S G, et al.Determination of Cu, Pb, Zn, W and Mo in deep-penetrating geochemical samples of the Lunchan ore concentrated district by ICP-MS with extraction elements of mobile forms[J].Rock and Mineral Analysis, 2015, 34(4):424-429.

    Google Scholar

    [24] 唐志中, 陈静, 孙自军, 等.深穿透地球化学样品中金活动态提取条件研究[J].黄金, 2013, 34(6):71-74.

    Google Scholar

    Tang Z Z, Chen J, Sun Z J, et al.Leaching conditions for determination of mobile forms gold in deep-penetrating geochemical samples[J].Gold, 2013, 34(6):71-74.

    Google Scholar

    [25] 连文莉, 来新泽, 刘军, 等.黑色岩型铂族矿物中铂钯金相态ICP-MS分析方法研究[J].岩矿测试, 2017, 36(2):120-129.

    Google Scholar

    Lian W L, Lai X Z, Liu J, et al.Phase analysis method of Pt, Pd and Au in black rock-type platinum group element minerals by ICP-MS[J].Rock and Mineral Analysis, 2017, 36(2):120-129.

    Google Scholar

    [26] 刘军, 闫红岭, 连文莉, 等.封闭溶矿-电感耦合等离子体质谱法测定地质样品中金银铂钯[J].冶金分析, 2016, 36(7):25-33.

    Google Scholar

    Liu J, Yan H L, Lian W L, et al.Determination of gold, silver, platimun and palladium in geological samples by inductively coupled plasma mass spectrometry with sealed dissolution[J].Metallurgical Analysis, 2016, 36(7):25-33.

    Google Scholar

    [27] Chen S Z, Yan J T, Wang C L, et al.Preconcentration and determination of Au(Ⅲ), Pd(Ⅱ), and Pt(Ⅳ) using dispersive micro-solid phase extraction with multi-porous ZnFe2O4 nanotubes and ICP-MS[J].Atomic Spectroscopy, 2019, 40(6):199-205. doi: 10.46770/AS.2019.06.001

    CrossRef Google Scholar

    [28] Guo W, Xie W K, Jin L L, et al.Determination of sub-ng·g-1 Au in geological samples by ion molecule reaction ICP-MS and CH4 plasma modifier[J].RSC Advances, 2015, 5:103189-103194. doi: 10.1039/C5RA19692B

    CrossRef Google Scholar

    [29] 何桂春, 吴艺鹏, 冯金妮.含金硫精矿焙烧除砷选铁-硫脲法提金试验研究[J].矿冶工程, 2012, 32(5):62-66.

    Google Scholar

    He G C, Wu Y P, Feng J N.Experimental study on gold extraction from gold-bearing pyrite concentrate by roasting for arsenic removal and thiourea leaching of gold[J].Mining and Metallurgical Engineering, 2012, 32(5):62-66.

    Google Scholar

    [30] 王学求, 叶荣.纳米金属微粒发现——深穿透地球化学的微观证据[J].地球学报, 2011, 32(1):7-12.

    Google Scholar

    Wang X Q, Ye R.Findings of nanoscale metal particles:Evidence for deep-penetrating geochemsitry[J].Acta Geoscientica Sinica, 2011, 32(1):7-12.

    Google Scholar

    [31] 张必敏, 王学求, 叶荣, 等.土壤微细粒分离测量技术在黄土覆盖区隐伏金矿勘查中的应用及异常成因探讨[J].桂林理工大学学报, 2019, 39(2):301-310.

    Google Scholar

    Zhang B M, Wang X Q, Ye R, et al.Fine-grained soil prospecting method for mineral exploration in loess covered areas and discussion on the origin of geochemical anomalies[J].Journal of Guilin University of Technology, 2019, 39(2):301-310.

    Google Scholar

    [32] 耿艳, 梁斌, 徐志强, 等.中性盐溶液提取土壤中金属活动态及其对隐伏矿的指示:以甲基卡稀有金属矿区为例[J].高校地质学报, 2019, 25(1):51-57.

    Google Scholar

    Geng Y, Liang B, Xu Z Q, et al.Neutral salt solution extraction of mobile forms of metals in soils and its indication of concealed orebody:A case study of the Jiajika rare metal deposits[J].Geological Journal of China Universities, 2019, 25(1):51-57.

    Google Scholar

    [33] 许世伟, 王建英, 郑升, 等.用硫脲从低品位尾矿中提取金的试验研究[J].湿法冶金, 2013, 32(2):79-81.

    Google Scholar

    Xu S W, Wang J Y, Zheng S, et al.Extraction of gold from low grade tailings using thiourea[J].Hydrometallurgy of China, 2013, 32(2):79-81.

    Google Scholar

    [34] 韩彬, 童雄, 谢贤, 等.硫代硫酸盐浸金体系研究进展[J].矿产综合利用, 2015(3):11-16.

    Google Scholar

    Han B, Tong X, Xie X, et al.Progress of thosulfate system in gold leaching[J].Multipurpose Utilization of Mineral Resources, 2015(3):11-16.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(4)

Article Metrics

Article views(2628) PDF downloads(80) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint