Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 1
Article Contents

Da-yong LI, Zhi-xiong ZHU, Jing LI, Liang WANG. Accuracy Research of Minerals with High Loss of Ignition during X-ray Fluorescence Spectrometry Semi-quantitative Analysis[J]. Rock and Mineral Analysis, 2020, 39(1): 135-142. doi: 10.15898/j.cnki.11-2131/td.201903080034
Citation: Da-yong LI, Zhi-xiong ZHU, Jing LI, Liang WANG. Accuracy Research of Minerals with High Loss of Ignition during X-ray Fluorescence Spectrometry Semi-quantitative Analysis[J]. Rock and Mineral Analysis, 2020, 39(1): 135-142. doi: 10.15898/j.cnki.11-2131/td.201903080034

Accuracy Research of Minerals with High Loss of Ignition during X-ray Fluorescence Spectrometry Semi-quantitative Analysis

More Information
  • BACKGROUNDThe SQX, X-ray fluorescence spectrometry semi-quantitative analysis software, was used to analyze an unknown sample. The software can analyze the range of 9F-92U elements, but cannot directly analyze the parameters such as H2O and C. Employing the balanced normalized calculation to test a special sample, such as bauxite with high loss of ignition and high crystalliferous water content, carbonate minerals with higher CO2 content, sulfide metal minerals with higher sulfur and carbon content, the analysis results for main elements like Al2O3, SiO2, CaO, MgO and Fe are largely affected by undetermined parameters resulting in low accuracy of semi-quantitative analysis data. OBJECTIVESTo propose a new calibration mode through experimental research. METHODSThe calibration mode quantitatively and selectively analyzes the parameters such as loss of ignition, crystalliferous water, carbon dioxide and sulfur of an unknown sample, based on the preliminary results of semi-quantitative analysis. By putting the quantitative analysis result into SQX, the new semi-quantitative analysis results were obtained by using the second equilibrium normalization calculation. RESULTSThe experimental results show that the average accuracy of multi-element in bauxite, carbonate minerals and sulfide metal minerals was increased by 2.6 to 4.5 times using this calibration mode. CONCLUSIONSThe method can quickly and accurately determine multi-element in minerals with high loss of ignition, including bauxite, carbonate minerals, and sulfide metal minerals.
  • 加载中
  • [1] Platbood G, Serbyns M, Quitin J M.Automated qualitative wavelength-dispersive X-ray fluorescence analysis[J].X-Ray Spectrometry, 1982, 11(2):83-88. doi: 10.1002/xrs.1300110211

    CrossRef Google Scholar

    [2] Vila E, Bermuder-Polonio J, Jimenez-Seco J L.Com-puter method for qualitative wavelength-dispersive X-ray fluorescence analysis[J].X-Ray Spectrometry, 1984, 13(4):187-191. doi: 10.1002/xrs.1300130413

    CrossRef Google Scholar

    [3] Jordanov J, Tsanov T, Stafanov R, et al.Problems of automatic qualitative X-ray fluorescence analysis:Part one[J].X-Ray Spectrometry, 1986, 16:255-259.

    Google Scholar

    [4] Jordanov J, Tsanov T, Stafanov R, et al.Problems of automated qualitative X-ray fluorescence analysis.2.Location of maxima and line identification[J].X-Ray Spectrometry, 1988, 17:117-121. doi: 10.1002/xrs.1300170308

    CrossRef Google Scholar

    [5] Janssens K, Espen P V.Implementation of an expert system for the qualitative interpretation of X-ray fluorescence spectra[J].Analytica Chimica Acta, 1986, 184:117-132. doi: 10.1016/S0003-2670(00)86475-2

    CrossRef Google Scholar

    [6] Janssens K, van Espen P.Evaluation of energy- dispersive X-ray spectra with the aid of expert systems[J].Analytica Chimica Acta, 1986, 191:169-180. doi: 10.1016/S0003-2670(00)86306-0

    CrossRef Google Scholar

    [7] Janssens K, Dorrine W, Espen P V.The development process of an expert system for the automated interpretation of large EMPA data sets[J].Chemometrics and Intelligent Laboratory Systems, 1988, 4:147-161. doi: 10.1016/0169-7439(88)80086-8

    CrossRef Google Scholar

    [8] 吉昂, 陶光仪, 卓尚军, 等.X射线荧光光谱分析[M].北京:科学出版社, 2005:145.

    Google Scholar

    Ji A, Tao G Y, Zhuo S J, et al.X-ray Fluorescence Spectrum Analysis[M].Beijing:Science Press, 2005:145.

    Google Scholar

    [9] 吉昂.X射线荧光光谱30年[J].岩矿测试, 2012, 31(3):383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002

    CrossRef Google Scholar

    Ji A.Development of X-ray fluorescence spectrometry in the 30 years[J].Rock and Mineral Analysis, 2012, 31(3):383-398. doi: 10.3969/j.issn.0254-5357.2012.03.002

    CrossRef Google Scholar

    [10] 刘敏, 庹先国, 李哲, 等.SDD-EDXRF中FP法无标样校正钒钛铁间吸收增强效应[J].核电子学与探测技术, 2012, 32(10):1192-1195. doi: 10.3969/j.issn.0258-0934.2012.10.020

    CrossRef Google Scholar

    Liu M, Tuo X G, Li Z, et al.The application of fundamental parameters method in EDXRF based on SDD[J].Nuclear Electronics & Detection Technology, 2012, 32(10):1192-1195. doi: 10.3969/j.issn.0258-0934.2012.10.020

    CrossRef Google Scholar

    [11] 刘岩, 孙杨, 李冬梅, 等.X射线荧光光谱无标样分析法在催化剂检测中的应用[J].分析试验室, 2017, 36(12):1398-1401.

    Google Scholar

    Liu Y, Sun Y, Li D M, et al.Application of X-ray fluorescence spectrometry in catalyst composition determination without standard[J].Chinese Journal of Analysis Laboratory, 2017, 36(12):1398-1401.

    Google Scholar

    [12] 张红菊, 张丁非, 余大亮, 等.X射线荧光光谱无标样分析在轻合金中的应用[J].分析试验室, 2017, 36(2):147-149.

    Google Scholar

    Zhang H J, Zhang D F, Yu D L, et al.Application of X-ray fluorescence spectrometer in the determination of light alloys[J].Chinese Journal of Analysis Laboratory, 2017, 36(2):147-149.

    Google Scholar

    [13] 张淑英, 卜赛斌.X射线荧光光谱无标半定量分析稀土元素方法的改进[J].岩矿测试, 2003, 22(1):37-39. doi: 10.3969/j.issn.0254-5357.2003.01.008

    CrossRef Google Scholar

    Zhang S Y, Bu S B.A semi-quantitative method improved for rare-earth element analysis by XRF without standards[J].Rock and Mineral Analysis, 2003, 22(1):37-39. doi: 10.3969/j.issn.0254-5357.2003.01.008

    CrossRef Google Scholar

    [14] 宋焕玲, 吴亲娟, 张兵.分析有机物中钾的IQ+无标样定量分析软件[J].科学技术与工程, 2006, 6(18):2981-2982. doi: 10.3969/j.issn.1671-1815.2006.18.049

    CrossRef Google Scholar

    Song H L, Wu Q J, Zhang B.Analysis of potassium in organic compounds by using IQ+ standardless quantitative analysis program[J].Science Technology and Engineering, 2006, 6(18):2981-2982. doi: 10.3969/j.issn.1671-1815.2006.18.049

    CrossRef Google Scholar

    [15] 朱志秀, 冯健, 李晨, 等.X射线荧光光谱无标样分析技术在出入境矿产品检验中的应用[J].理化检验(化学分册), 2009, 45(7):832-835.

    Google Scholar

    Zhu Z X, Feng J, Li C, et al.Application of XRFS without using standard samples to inspection of mineral products in exits and entrances at customs[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2009, 45(7):832-835.

    Google Scholar

    [16] 梁述廷, 刘玉纯, 胡浩.X射线荧光光谱法同时测定土壤样品中碳氮等多元素[J].岩矿测试, 2004, 23(2):102-108. doi: 10.3969/j.issn.0254-5357.2004.02.005

    CrossRef Google Scholar

    Liang S T, Liu Y C, Hu H.Determination of C, N and other 36 elements in soil samples by XRF[J].Rock and Mineral Analysis, 2004, 23(2):102-108. doi: 10.3969/j.issn.0254-5357.2004.02.005

    CrossRef Google Scholar

    [17] 张勤, 樊守忠, 潘宴山, 等.X射线荧光光谱法测定化探样品中主、次和痕量组分[J].理化检验, 2005, 41(8):547-552. doi: 10.3321/j.issn:1001-4020.2005.08.003

    CrossRef Google Scholar

    Zhang Q, Fan S Z, Pan Y S, et al.X-ray fluorescence spectrometric determination of major, minor and trace elements in geochemical samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2005, 41(8):547-522. doi: 10.3321/j.issn:1001-4020.2005.08.003

    CrossRef Google Scholar

    [18] 修凤凤, 樊勇, 李俊雨, 等.波长色散X射线荧光光谱法测定金矿型构造叠加晕样品中18种次量元素[J].岩矿测试, 2018, 37(5):526-532.

    Google Scholar

    Xiu F F, Fan Y, Li J Y, et al.Determination of 18 minor elements in the structural superimposed Halo samples from gold deposits by wavelength dispersive X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2018, 37(5):526-532.

    Google Scholar

    [19] 刘玉纯, 林庆文, 马玲, 等.粉末压片制样-X射线荧光光谱法分析地球化学调查样品测量条件的优化[J].岩矿测试, 2018, 37(6):671-677.

    Google Scholar

    Liu Y C, Lin Q W, Ma L, et al.Optimization of measurement conditions for geochemical survey sample analysis by X-ray fluorescence spectrometry with pressed powder pellet sample preparation[J].Rock and Mineral Analysis, 2018, 37(6):671-677.

    Google Scholar

    [20] 卜兆杰, 蒋春宏, 陶泽秀, 等.粉末压片制样-X射线荧光光谱法测定稀土镁中间合金中镁锰硅钛钙铁[J].冶金分析, 2018, 38(3):61-64.

    Google Scholar

    Bu Z J, Jiang C H, Tao Z X, et al.Determination of magnesium, manganese, silicon, titanium, calcium, iron in rare earth-magnesium intermediate alloy by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2018, 38(3):61-64.

    Google Scholar

    [21] 李强, 张学华.粉末压片-X射线荧光光谱法快速分析多金属核和富钴结壳中22种组分[J].冶金分析, 2014, 34(1):28-33.

    Google Scholar

    Li Q, Zhang X H.Rapid determination of twenty-two components in polymetallic nodule and cobalt-rich crusts by X-ray fluorescence spectrometry with pressed powder pellet[J].Metallurgical Analysis, 2014, 34(1):28-33.

    Google Scholar

    [22] 曾江萍, 李小莉, 张楠, 等.粉末压片制样-X射线荧光光谱法测定锂云母中的高含量氟[J].岩矿测试, 2019, 38(1):71-76.

    Google Scholar

    Zeng J P, Li X L, Zhang N, et al.Determination of high concentration of fluorine in lithium mica by X-ray fluorescence spectrometry with pressed-powder pellets[J].Rock and Mineral Analysis, 2019, 38(1):71-76.

    Google Scholar

    [23] 《岩石矿物分析》编委会.岩石矿物分析(第四版第三分册)[M].北京:地质出版社, 2011:234.

    Google Scholar

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (The Fourth Edition:Vol.Ⅲ)[M].Beijing:Geological Publishing House, 2011:234.

    Google Scholar

    [24] 杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社, 1993:5-6.

    Google Scholar

    Yang Z Y.Alumina Production Technology[M].Beijing:Metallurgical Industry Press, 1993:5-6.

    Google Scholar

    [25] 刘静, 马慧侠, 彭展, 等.浅析铝土矿烧失量放入差异在X射线荧光光谱(XRF)分析中造成的影响[J].中国无机分析化学, 2018, 8(4):26-29. doi: 10.3969/j.issn.2095-1035.2018.04.007

    CrossRef Google Scholar

    Liu J, Ma H X, Peng Z, et al.Influence of measurement on the ignition loss difference of bauxite by X-ray fluorescence (XRF)[J].Chinese Journal of Inorganic Analytical Chemistry, 2018, 8(4):26-29. doi: 10.3969/j.issn.2095-1035.2018.04.007

    CrossRef Google Scholar

    [26] 孙晓飞, 文孟喜, 杨丹丹.康普顿散射线结合经验系数法校正在X射线荧光光谱测定石灰石和白云石中的应用[J].冶金分析, 2016, 36(1):11-17.

    Google Scholar

    Sun X F, Wen M X, Yang D D.Application of Compton scatter and empirical coefficient correction in X-ray fluorescence spectrometric determination of limestone and dolomite[J].Metallurgical Analysis, 2016, 36(1):11-17.

    Google Scholar

    [27] 田琼, 张文昔, 宋嘉宁, 等.波长色散X射线荧光光谱法测定锌精矿中主次量成分[J].岩矿测试, 2012, 31(3):463-467. doi: 10.3969/j.issn.0254-5357.2012.03.015

    CrossRef Google Scholar

    Tian Q, Zhang W X, Song J N, et al.Determination of major and minor components in zinc concentrate by wavelength dispersive-X-ray fluorescence spectrometry[J].Rock and Mineral Analysis, 2012, 31(3):463-467. doi: 10.3969/j.issn.0254-5357.2012.03.015

    CrossRef Google Scholar

    [28] 王谦, 应晓浒, 张建波.X射线荧光光谱分析样品烧增量的影响及校正[J].光谱学与光谱分析, 2011, 31(9):2574-2577.

    Google Scholar

    Wang Q, Ying X H, Zhang J B.The influence of the gain on ignition and correction in X-ray fluorescence spectrometry[J].Spectroscopy and Spectral Analysis, 2011, 31(9):2574-2577.

    Google Scholar

    [29] 曲月华, 王一凌, 张悫, 等.熔融制样-X射线荧光光谱法测定锰矿中9种组分[J].冶金分析, 2011, 31(9):24-29. doi: 10.3969/j.issn.1000-7571.2011.09.006

    CrossRef Google Scholar

    Qu Y H, Wang Y L, Zhang Q, et al.Determination of nine components in manganese ore by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2011, 31(9):24-29. doi: 10.3969/j.issn.1000-7571.2011.09.006

    CrossRef Google Scholar

    [30] 曾江萍, 张莉娟, 李小莉, 等.超细粉末压片-X射线荧光光谱法测定磷矿石中12种组分[J].冶金分析, 2015, 35(7):37-43.

    Google Scholar

    Zeng J P, Zhang L J, Li X L, et al.Determination of twelve components in phosphate ore by X-ray fluorescence spectrometry with ultra-fine powder tabletting[J].Metallurgical Analysis, 2015, 35(7):37-43.

    Google Scholar

    [31] 宫嘉辰, 白小叶, 姜炳南.熔融制样-X射线荧光光谱法测定钒钛磁铁矿中12种组分[J].冶金分析, 2019, 39(2):66-70.

    Google Scholar

    Gong J C, Bai X Y, Jiang B N.Determination of twelve components in vanadium-titanium magnetite ore by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2019, 39(2):66-70.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(5)

Article Metrics

Article views(3355) PDF downloads(146) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint