Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 1
Article Contents

Dong REN, Yu-hao CHEN, Ting-zhong ZHANG. Application of High Pressure Closed Digestion in Pretreatment of Effective Soil Samples[J]. Rock and Mineral Analysis, 2020, 39(1): 143-149. doi: 10.15898/j.cnki.11-2131/td.201902270027
Citation: Dong REN, Yu-hao CHEN, Ting-zhong ZHANG. Application of High Pressure Closed Digestion in Pretreatment of Effective Soil Samples[J]. Rock and Mineral Analysis, 2020, 39(1): 143-149. doi: 10.15898/j.cnki.11-2131/td.201902270027

Application of High Pressure Closed Digestion in Pretreatment of Effective Soil Samples

  • BACKGROUNDAfter the soil sample is extracted by organic acid, there are a lot of organic acids and organic matter in the solution. If these remaining materials are not destroyed, the central tube and rectangular tube of the atomizer are easily plugged after they have entered the inductively coupled plasma-optical emission spectrometry (ICP-OES) sampling system. Particles absorbed in the central tube wall and rectangular tube wall will result in poor analytical precision and accuracy, and further affect comprehensive evaluation of soil availability. OBJECTIVESTo make the determination of available state in soil sample more stable and accurate, reduce the detection limit of the method, and prevent the sample from contamination and volatilization loss in the pretreatment. METHODSSoil samples were extracted with organic acids (DTPA, oxalic acid-ammonium oxalate, citric acid, etc.), filtered or centrifuged, and the supernatant was absorbed into a high-pressure sealed digestion tank. The supernatant was treated by an electric heating plate and then added with 2mL concentrated nitric acid. The soil samples were heated for at least 3 hours in an oven at 180℃. The effective element contents of copper, zinc, iron, manganese, cadmium, lead, nickel, chromium, molybdenum and silicon were determined by ICP-OES. RESULTSThe relative standard deviations in this method were 2.5%-9.8%, the relative errors were -2.1%-5.2%, the recoveries were 90.1%-103.2%, and the detection limits were 0.32μg/kg-0.038mg/kg. Using the method of burning in the high temperature furnace and the open digestion by nitric acid-perchloric acid (sulfuric acid), the recoveries were 89.2%-100.5%, and the detection limits were 0.50μg/kg-0.050mg/kg. CONCLUSIONSThe method has stable measurement results, low blank and a short analysis period, and is especially suitable for continuous analysis of batch samples.
  • 加载中
  • [1] 鲍士旦.土壤农化分析[M].北京:中国农业出版社, 2000.

    Google Scholar

    Bao S D.Soil Agricultural Chemistry Analysis[M].Beijing:China Agricultural Publishing House, 2000.

    Google Scholar

    [2] 周卫红, 张静静, 邹萌萌, 等.土壤重金属有效态含量检测与监测现状、问题及展望[J].中国生态农业学报, 2017, 25(4):605-615.

    Google Scholar

    Zhou W H, Zhang J J, Zou M M, et al.The detection and monitoring of available heavy metal content in soil:A review[J].Chinese Journal of Eco-Agriculture, 2017, 25(4):605-615.

    Google Scholar

    [3] Khan A, Khan S, Khan M A, et al.The uptake and bio-accumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk:A review[J].Environmental Science and Pollution Research, 2015, 22(18):13772-13799. doi: 10.1007/s11356-015-4881-0

    CrossRef Google Scholar

    [4] Stasinos S, Zabetakis I.The uptake of nickel and chro-mium from irrigation water by potatoes, carrots and onions[J].Ecotoxicology and Environmental Safety, 2013, 91:122-128. doi: 10.1016/j.ecoenv.2013.01.023

    CrossRef Google Scholar

    [5] 李锡坤, 李鉴伦, 洪翊, 等.土壤中元素有效态分析质量管理实践[J].岩矿测试, 2001, 20(4):294-296. doi: 10.3969/j.issn.0254-5357.2001.04.012

    CrossRef Google Scholar

    Li X K, Li J L, Hong Y, et al.Quality management practice of effective state analysis of elements in soil[J].Rock and Mineral Analysis, 2001, 20(4):294-296. doi: 10.3969/j.issn.0254-5357.2001.04.012

    CrossRef Google Scholar

    [6] 李锡坤, 李鉴伦, 洪翊, 等.酸性土壤中20种元素有效态浸提体系浅析[J].岩矿测试, 2001, 20(3):167-173. doi: 10.3969/j.issn.0254-5357.2001.03.002

    CrossRef Google Scholar

    Li X K, Li J L, Hong Y, et al.Preliminary analysis of 20 elements available extraction systems in acid soils[J].Rock and Mineral Analysis, 2001, 20(3):167-173. doi: 10.3969/j.issn.0254-5357.2001.03.002

    CrossRef Google Scholar

    [7] 《岩石矿物分析》编委会.岩石矿物分析(第四版第四分册)[M].北京:地质出版社, 2011:891-892.

    Google Scholar

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (The Fourth Edition:Vol.Ⅳ)[M].Beijing:Geological Publishing House, 2011:891-892.

    Google Scholar

    [8] 刘妹, 顾铁新, 程志中, 等.10个土壤有效态成分分析标准物质研制[J].岩矿测试, 2011, 30(5):536-544. doi: 10.3969/j.issn.0254-5357.2011.05.004

    CrossRef Google Scholar

    Liu M, Gu T X, Cheng Z Z, et al.Ten reference materials for available nutrients of agricultural soils[J].Rock and Mineral Analysis, 2011, 30(5):536-544. doi: 10.3969/j.issn.0254-5357.2011.05.004

    CrossRef Google Scholar

    [9] 季海冰, 潘荷芳, 李震宇, 等.电感耦合等离子体质谱法测定土壤中重金属有效态浓度[J].环境污染与防治, 2008, 30(12):60-62. doi: 10.3969/j.issn.1001-3865.2008.12.015

    CrossRef Google Scholar

    Ji H B, Pan H F, Li Z Y, et al.Determination of available concentrations of heavy metals in soil by inductively coupled plasma mass spectrometry[J].Environmental Pollution and Prevention, 2008, 30(12):60-62. doi: 10.3969/j.issn.1001-3865.2008.12.015

    CrossRef Google Scholar

    [10] 刘永林, 邱祖民, 周萍, 等.电感耦合等离子体质谱法测定土壤中有效态微量元素[J].分析科学学报, 2012, 28(6):862-864.

    Google Scholar

    Liu Y L, Qiu Z M, Zhou P, et al.Determination of available trace elements in soil by inductively coupled plasma mass spectrometry[J].Journal of Analytical Sciences, 2012, 28(6):862-864.

    Google Scholar

    [11] 郭继斌, 王莉, 韩娇, 等.联合浸提法测定土壤有效态镉[J].江苏农业科学, 2016, 44(3):369-372.

    Google Scholar

    Guo J B, Wang L, Han J, et al.Combined extraction method for the determination of available cadmium in soil[J].Jiangsu Agricultural Science, 2016, 44(3):369-372.

    Google Scholar

    [12] 杨俐苹, 金继运, 梁鸣早, 等.ASI法测定土壤有效P、K、Zn、Cu、Mn与我国常规化学方法的相关性研究[J].土壤通报, 2000, 31(6):277-279. doi: 10.3321/j.issn:0564-3945.2000.06.010

    CrossRef Google Scholar

    Yang L P, Jin J Y, Liang M Z, et al.Study on the correlation between ASI determination of available P, K, Zn, Cu, Mn in soil and conventional chemical methods in China[J].Chinese Journal of Soil Science, 2000, 31(6):277-279. doi: 10.3321/j.issn:0564-3945.2000.06.010

    CrossRef Google Scholar

    [13] 仝淑慧, 王莉, 赵娟, 等.M3法与DTPA法测定我国北方土壤微量元素的相关性及其浸提特征的研究[J].土壤通报, 2016, 44(2):420-424.

    Google Scholar

    Tong S H, Wang L, Zhao J, et al.Study on the correlation and extraction characteristics of trace elements in soil of Northern China by M3 and DTPA method[J].Chinese Journal of Soil Science, 2016, 44(2):420-424.

    Google Scholar

    [14] 韩张雄, 熊英, 王龙山, 等.DTPA浸提-电感耦合等离子体质谱法测定石灰性土壤中的有效态钴和有效态铅[J].岩矿测试, 2012, 31(6):950-953. doi: 10.3969/j.issn.0254-5357.2012.06.006

    CrossRef Google Scholar

    Han Z X, Xiong Y, Wang L S, et al.Rapid determination of available cobalt & lead in calcareous soils by inductively coupled plasma-mass spectrometry with DTPA extraction[J].Rock and Mineral Analysis, 2012, 31(6):950-953. doi: 10.3969/j.issn.0254-5357.2012.06.006

    CrossRef Google Scholar

    [15] 盖荣银, 孙友宝, 马晓玲, 等.二乙烯三胺五乙酸提取结合火焰原子吸收光谱法测定土壤中的有效态元素[J].环境化学, 2016, 35(5):1096-1097.

    Google Scholar

    Gai R Y, Sun Y B, Ma X L, et al.Diethylenetriamine pentaacetic acid and determination of available elements in soil by flame atomic absorption spectrometry[J].Environmental Chemistry, 2016, 35(5):1096-1097.

    Google Scholar

    [16] Li J, He P, Yu C.DPTA-catalyzed one-pot regioselective synthesis of polysubstituted pyridines and 1, 4-dihydropyridines[J].Tetrahedron, 2012, 68(22):4138-4144. doi: 10.1016/j.tet.2012.03.104

    CrossRef Google Scholar

    [17] 胡德新, 武素茹, 刘跃勇, 等.改进BCR法-电感耦合等离子体发射光谱法测定矿产品堆场土壤中镉砷铅的化学形态[J].岩矿测试, 2014, 33(3):374-378. doi: 10.3969/j.issn.0254-5357.2014.03.016

    CrossRef Google Scholar

    Hu D X, Wu S R, Liu Y Y, et al.Determination of chemical species of cadmium, arsenic and lead in mineral yard soil by modified BCR and ICP-AES method[J].Rock and Mineral Analysis, 2014, 33(3):374-378. doi: 10.3969/j.issn.0254-5357.2014.03.016

    CrossRef Google Scholar

    [18] 孙媛媛, 孙友宝, 盖荣银, 等.二乙烯三胺五乙酸(DTPA)提取ICP-AES法测定土壤中有效态元素[J].环境化学, 2015, 34(8):1578-1579.

    Google Scholar

    Sun Y Y, Sun Y B, Gai R Y, et al.Extraction of diethylenetriamine pentaacetic acid (DTPA) and determination of available elements in soil by ICP-AES[J].Environmental Chemistry, 2015, 34(8):1578-1579.

    Google Scholar

    [19] 孙朝阳, 贺颖婷, 王雯妮.端视电感耦合等离子体发射光谱法测定土壤中有效钼[J].岩矿测试, 2010, 29(3):267-270. doi: 10.3969/j.issn.0254-5357.2010.03.015

    CrossRef Google Scholar

    Sun C Y, He Y T, Wang W N.End-view ICP-OES determination of available molybdenum in soil[J].Rock and Mineral Analysis, 2010, 29(3):267-270. doi: 10.3969/j.issn.0254-5357.2010.03.015

    CrossRef Google Scholar

    [20] 陈志慧, 孙洛新, 钟莅湘, 等.快速催化极谱法测定土壤中的有效态钼[J].岩矿测试, 2014, 33(4):584-588. doi: 10.3969/j.issn.0254-5357.2014.04.021

    CrossRef Google Scholar

    Chen Z H, Sun L X, Zhong L X, et al.Rapid catalytic polarographic determination of available molybdenum in soil[J].Rock and Mineral Analysis, 2014, 33(4):584-588. doi: 10.3969/j.issn.0254-5357.2014.04.021

    CrossRef Google Scholar

    [21] 杨雪兰, 樊亚东, 苏云松.土壤中有效钼测定方法的研究进展[J].理化检验(化学分册), 2010, 46(12):1485-1487.

    Google Scholar

    Yang X L, Fan Y D, Su Y S.Progress in the determination of available molybdenum in soil[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2010, 46(12):1485-1487.

    Google Scholar

    [22] 孙鸣镝, 方海兰, 郝冠军, 等.AB-DTPA, CaCl2-DTPA两种方法分析土壤8种元素的有效态含量[J].土壤与作物, 2014, 3(2):50-55.

    Google Scholar

    Sun M D, Fang H L, Hao G J, et al.Analysing the available content of eight elements in soil from Shanghai by AB-DTPA and CaCl2-DTPA method[J].Soil and Crop, 2014, 3(2):50-55.

    Google Scholar

    [23] 周春燕, 张玉龙, 石岩, 等.不同浸提剂对保护地土壤有效硅测定结果的影响[J].中国农学通报, 2006, 22(2):226-230. doi: 10.3969/j.issn.1000-6850.2006.02.062

    CrossRef Google Scholar

    Zhou C Y, Zhang Y L, Shi Y, et al.Effects of different extractants on the determination results of available silicon in protected soil[J].China Agricultural Bulletin, 2006, 22(2):226-230. doi: 10.3969/j.issn.1000-6850.2006.02.062

    CrossRef Google Scholar

    [24] 吴磊, 刘义博, 王家松, 等.高压密闭消解-电感耦合等离子体质谱法测定锰矿石中的稀土元素前处理方法研究[J].岩矿测试, 2018, 37(6):637-643.

    Google Scholar

    Wu L, Liu Y B, Wang J S, et al.Study on the pretreatment method for determination of rare earth elements in manganese ores by high pressure sealed digestion-inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2018, 37(6):637-643.

    Google Scholar

    [25] 鲁照玲, 胡红云, 姚洪.土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究[J].岩矿测试, 2012, 31(2):241-246. doi: 10.3969/j.issn.0254-5357.2012.02.008

    CrossRef Google Scholar

    Lu Z L, Hu H Y, Yao H.Quantitative analysis of heavy metal elements in soil by inductively coupled plasma mass spectrometry[J].Rock and Mineral Analysis, 2012, 31(2):241-246. doi: 10.3969/j.issn.0254-5357.2012.02.008

    CrossRef Google Scholar

    [26] 冯婧.重金属元素分析消解技术在镉、砷检测中的应用比较[J].食品研究与开发, 2017, 38(16):153-158. doi: 10.3969/j.issn.1005-6521.2017.16.034

    CrossRef Google Scholar

    Feng J.Comparison of the application of heavy metal element analysis and digestion technology in the detection of cadmium and arsenic[J].Food Research and Development, 2017, 38(16):153-158. doi: 10.3969/j.issn.1005-6521.2017.16.034

    CrossRef Google Scholar

    [27] 贾双琳, 赵平, 杨刚, 等.混合酸敞开或高压密闭溶样-ICP-MS测定地质样品中稀土元素[J].岩矿测试, 2014, 33(2):186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005

    CrossRef Google Scholar

    Jia S L, Zhao P, Yang G, et al.Determination of rare earth elements in geological samples by ICP-MS with mixed acid open or high pressure closed solution samples[J].Rock and Mineral Analysis, 2014, 33(2):186-191. doi: 10.3969/j.issn.0254-5357.2014.02.005

    CrossRef Google Scholar

    [28] 田娟娟, 杜慧娟, 潘秋红, 等.电热板消解与密闭罐消解对土壤中49种矿质元素ICP-MS法检测的影响[J].分析测试学报, 2009, 28(3):319-325. doi: 10.3969/j.issn.1004-4957.2009.03.014

    CrossRef Google Scholar

    Tian J J, Du H J, Pan Q H, et al.Effects of electrothermal plate digestion and closed tank digestion on the determination of 49 mineral elements in soil by ICP-MS[J].Journal of Instrumental Analysis, 2009, 28(3):319-325. doi: 10.3969/j.issn.1004-4957.2009.03.014

    CrossRef Google Scholar

    [29] 褚卓栋, 肖亚兵, 刘文菊, 等.高压密闭消解土壤砷、汞、铅、镉酸体系比较[J].中国环境监测, 2009, 25(5):57-61. doi: 10.3969/j.issn.1002-6002.2009.05.018

    CrossRef Google Scholar

    Zhu Z D, Xiao Y B, Liu W J, et al.Comparisons of soil arsenic, mercury, lead and cadmium digestion systems by high pressure closed digestion[J].China Environmental Monitoring, 2009, 25(5):57-61. doi: 10.3969/j.issn.1002-6002.2009.05.018

    CrossRef Google Scholar

    [30] 任冬, 刘彤彤, 刘安安, 等.高压密闭消解处理草酸-草酸铵浸提剂方法的改进[J].中国土壤与肥料, 2019(3):198-201.

    Google Scholar

    Ren D, Liu T T, Liu A A, et al.Improvement of high pressure sealed digestion method for treating oxalic acid-ammonium oxalate extractant[J].Soil and Fertilizer Sciences in China, 2019(3):198-201.

    Google Scholar

    [31] EN 13656: 2002.Characterization of Waste-Microwave Assisted Digestion with Hydrofluoric (HF), Nitric (HNO3), and Hydrochloric (HCl) Acid Mixture for Subsequent Determination of Elements[S].

    Google Scholar

    [32] Link D D, Kingston H M S, Harrilla G J, et al. Development of microwave-assisted drying methods for sample preparation for dried spot micro-X-ray fluorescence analysis[J].Analytical Chemistry, 2002, 74(5):1165-1170. doi: 10.1021/ac010726t

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(2)

Article Metrics

Article views(1246) PDF downloads(121) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint