Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2020 Vol. 39, No. 5
Article Contents

Xiang-lei LIU, Wen-jun SUN, Tian-yao WEN, Yong-xin LI, Teng-fei WANG, Xue-li LIU, Yu YAN, Huai-chao LI. Determination of 23 Metal Elements in Detailed Soil Survey Samples by Inductively Coupled Plasma-Mass Spectrometry with Three Acid Stepwise Digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 793-800. doi: 10.15898/j.cnki.11-2131/td.201902270026
Citation: Xiang-lei LIU, Wen-jun SUN, Tian-yao WEN, Yong-xin LI, Teng-fei WANG, Xue-li LIU, Yu YAN, Huai-chao LI. Determination of 23 Metal Elements in Detailed Soil Survey Samples by Inductively Coupled Plasma-Mass Spectrometry with Three Acid Stepwise Digestion[J]. Rock and Mineral Analysis, 2020, 39(5): 793-800. doi: 10.15898/j.cnki.11-2131/td.201902270026

Determination of 23 Metal Elements in Detailed Soil Survey Samples by Inductively Coupled Plasma-Mass Spectrometry with Three Acid Stepwise Digestion

  • OBJECTIVES The soil detailed survey samples have the characteristics of large quantity, complex matrix, and high organic matter content. The traditional digestion method using a variety of mixed acid systems not only leads to incomplete digestion of organic matter, but also leaves black carbon in the solution after digestion. Because the sample is only extracted with dilute nitric acid, some insoluble oxides, sulfates, and fluorides are difficult to form soluble salts, resulting in incomplete extraction. If the reverse aqua regia is used during extraction, it is easy to introduce a large amount of chloride ions and cause the interference problem of chlorine multi-atomic ion mass spectrometry. OBJECTIVES In order to accurately determine 23 metal elements in soil. The analysis efficiency and quality can be improved by making full use of the different characteristics of nitric acid, hydrofluoric acid and perchloric acid in sample digestion. METHODS Soil samples were digested on electric heating plate, by stepwise addition of nitric acid, hydrofluoric acid and perchloric acid. For the digested samples, nitric acid-hydrochloric acid (20:1, V/V) mixed solution was used as the extractant, effectively reducing the interference of chlorine polyatomic ion mass spectrum and extracting elements thoroughly. Twenty-three metal elements in the soil were simultaneously determined by inductively coupled plasma-mass spectrometry (ICP-MS). RESULTS This method can effectively digest organic matter and silicate components in soil. It has the advantages of less reagent consumption, less mass spectrum interference of chlorine, simple operation process, high working efficiency, and lower detection limit (0.0008-0.90mg/kg, 3s). This method was applied to the national level standard substance such as dark brown soil, limestone soil, yellow brown soil samples for the determination of 23 elements, and the measurement result was superior to the traditional digestion method. The precision (RSD, n=6) was 0.022%-5.83% and relative error was -8.33% to 9.17%. The results are consistent with the certified values, indicating that the method is applicable and reliable. CONCLUSIONS The method for the simultaneous determination of 23 elements in soil samples by ICP-MS with three acid stepwise digestion has high applicability and reliability.
  • 加载中
  • [1] 贺攀红, 杨珍, 龚治湘.氢化物发生-电感耦合等离子体发射光谱法同时测定土壤中的痕量砷铜铅锌镍钒[J].岩矿测试, 2020, 39(2):235-242.

    Google Scholar

    He P H, Yang Z, Gong Z X.Simultaneous determination of trace arsenic, copper, lead, zine, niclel and vanadium in soils by hydride generation-inductively coupled plasma-optical emission spectrometry[J].Rock and Mineral Analysis, 2020, 39(2):235-242.

    Google Scholar

    [2] 张更宇, 刘伟, 崔世荣, 等.分类消解-电感耦合等离子体原子发射光谱法测定环境土壤中15种金属元素的含量[J].理化检验(化学分册), 2018, 54(4):428-432.

    Google Scholar

    Zhang G Y, Liu W, Cui S R, et al.Determination of 15 metal elements in environmental soil by inductively coupled plasma atomic emission spectrometry with classification digestion[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2018, 54(4):428-432.

    Google Scholar

    [3] 黄勤, 凤海元, 吴忠忠.电感耦合等离子体质谱法测定环境评价性土壤中铬铜镉铅[J].化学研究与应用, 2017, 29(9):1444-1448.

    Google Scholar

    Huang Q, Feng H Y, Wu Z Z.Determination of Cr, Cu, Cd and Pb in environmental evaluation soils by inductively coupled plasma-mass spectrometry[J].Chemical Research and Application, 2017, 29(9):1444-1448.

    Google Scholar

    [4] 赵小学, 赵宗生, 陈纯, 等.电感耦合等离子体质谱法内标元素选择的研究[J].中国环境监测, 2016, 32(1):84-87.

    Google Scholar

    Zhao X X, Zhang Z S, Chen C, et al.Study on selection of internal standard element of ICP-MS[J].Environmental Monitoring in China, 2016, 32(1):84-87.

    Google Scholar

    [5] 王云凤, 王江鱼.四种酸体系溶样法对电感耦合等离子体质谱法测定水系沉积物中16种金属元素的影响[J].冶金分析, 2016, 36(7):63-68.

    Google Scholar

    Wang Y F, Wang J Y.Influence of four sample solution method with acid system on determination of sixteen metal elements in stream sediment by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2016, 36(7):63-68.

    Google Scholar

    [6] 王初丹, 罗盛旭.硝酸-氢氟酸消解ICP-MS测定海洋沉积物中多种金属元素[J].桂林理工大学学报, 2016, 36(2):337-340.

    Google Scholar

    Wang C D, Luo S X.Determination of metal elements in marine sediments by nitric acid-hydrofluoric acid digestion and ICP-MS[J].Journal of Guilin University of Technology, 2016, 36(2):337-340.

    Google Scholar

    [7] 刘向磊, 孙文军, 文田耀, 等.负载泡塑富集-电感耦合等离子体质谱法测定地质样品中痕量金和银[J].分析化学, 2015, 43(9):1371-1376.

    Google Scholar

    Liu X L, Sun W J, Wen T Y, et al.Determination of Au and Ag in geological samples by loaded polyurethane foam-inductively coupled plasma-mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2015, 43(9):1371-1376.

    Google Scholar

    [8] 张萍, 谢华林.ORS-ICP-MS测定工业污泥中的重金属元素[J].环境工程学报, 2014, 8(7):3089-3062.

    Google Scholar

    Zhang P, Xie H L.Determination of heavy metal elements in industrial sludge by ORS-ICP-MS[J].Chinese Journal of Environmental Engineering, 2014, 8(7):3089-3062.

    Google Scholar

    [9] 李斌, 赵春江.我国当前农产品产地土壤重金属污染形势及检测技术分析[J].农业资源与环境学报, 2013, 30(5):1-7.

    Google Scholar

    Li B, Zhao C J.Current situation of heavy metals pollution in soil at farmland and detection technologies analysis in China[J].Journal of Agricultural Resources and Environment, 2013, 30(5):1-7.

    Google Scholar

    [10] 张霖琳, 梁宵, 加那尔别克·西里甫汗, 等.在土壤及底泥重金属测定中不同前处理和分析方法的比较[J].环境化学, 2013, 32(2):302-306.

    Google Scholar

    Zhang L L, Liang X, Janarbek X, et al.Comparison of different pretreatment and analytical method of heavy metals in soil and sediment samples[J].Environmental Chemistry, 2013, 32(2):302-306.

    Google Scholar

    [11] 刘晔, 第五春荣, 柳小明, 等.密闭高温高压溶样ICP-MS测定56种国家地质标准物质中的36种痕量元素——对部分元素参考值修正和定值的探讨[J].岩矿测试, 2013, 32(2):221-228.

    Google Scholar

    Liu Y, Diwu C R, Liu X M, et al.Determination of 36 trace elements in 56 Chinese national standard reference materials by ICP-MS with pressurized acid-digestion[J].Rock and Mineral Analysis, 2013, 32(2):221-228.

    Google Scholar

    [12] 鲁照玲, 胡红云, 姚洪.土壤中重金属元素电感耦合等离子体质谱定量分析方法的研究[J].岩矿测试, 2012, 31(2):241-246.

    Google Scholar

    Lu Z L, Hu H Y, Yao H.Study on quantitative analysis method for several heavy metals in soil sample by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2012, 31(2):241-246.

    Google Scholar

    [13] 朱晓贤, 王攀峰, 邰文亮, 等.ICP-MS测量土壤中重金属元素的方法研究[J].地下水, 2020, 42(2):97-100.

    Google Scholar

    Zhu X X, Wang P F, Tai W L, et al.Study on the method of measuring heavy metal elements in soil by ICP-MS[J].Ground Water, 2020, 42(2):97-100.

    Google Scholar

    [14] 徐聪, 赵婷, 池海涛, 等.微波消解-ICP-MS法测定土壤及耕作物小麦中的8种重金属元素[J].中国测试, 2019, 45(5):85-92.

    Google Scholar

    Xu C, Zhao T, Chi H T, et al.Determination of eight kinds of heavy metal elements in cultivated soil and the wheat by microwave digestion-ICP-MS method[J].China Measurement & Test, 2019, 45(5):85-92.

    Google Scholar

    [15] 文典, 严冬, 赵沛华, 等.快速高通量全消解ICP-MS法测定《全国土壤污染状况详查》项目中14种元素[J].环境化学, 2018, 37(6):1432-1435.

    Google Scholar

    Wen D, Yan D, Zhao P H, et al.Fast determination of 14 elements in China soil pollution survey with high throughput full digestion method by ICP-MS[J].Environmental Chemistry, 2018, 37(6):1432-1435.

    Google Scholar

    [16] 孙杰, 吴玥, 蒋沄泱, 等.稀酸酸解-电感耦合等离子体质谱法测定土壤中14种无机元素的含量[J].理化检验(化学分册), 2017, 54(3):315-321.

    Google Scholar

    Sun J, Wu Y, Jiang Y Y, et al.ICP-MS determination of inorganic elements in soil using dilute acid dissolution[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2017, 54(3):315-321.

    Google Scholar

    [17] 彭杨, 吴婧, 巢静波, 等.土壤/沉积物中14种金属元素的ICP-MS准确测定方法[J].环境化学, 2017, 36(1):175-182.

    Google Scholar

    Peng Y, Wu J, Chao J B, et al.A method for the the accurate determination of 14 metal elements in soils sediments by ICP-MS[J].Environmental Chemistry, 2017, 36(1):175-182.

    Google Scholar

    [18] 李自强, 李小英, 钟琦, 等.电感耦合等离子体质谱法测定土壤重金属普查样品中铬铜镉铅的关键环节研究[J].岩矿测试, 2016, 35(1):37-41.

    Google Scholar

    Li Z Q, Li X Y, Zhong Q, et al.Determination of Cr, Cu, Cd and Pb in soil samples by inductively coupled plasma-mass spectrometry for an investigation of heavy metal pollution[J].Rock and Mineral Analysis, 2016, 35(1):37-41.

    Google Scholar

    [19] 荆淼, 王其枫, 王艳萍, 等.电感耦合等离子体质谱法测定土壤中常规元素及稀土元素[J].环境化学, 2016, 35(11):2445-2446.

    Google Scholar

    Jing M, Wang Q F, Wang Y P, et al.Detection of metallic elements and rare earth elements in soil by inductively coupled plasma-mass spectrometry[J].Environmental Chemistry, 2016, 35(11):2445-2446.

    Google Scholar

    [20] 孙婧, 马丽, 杨兆光.混酸微波辅助萃取ICP-MS测定不同性质土壤中的重金属元素[J].环境化学, 2015, 34(6):1057-1063.

    Google Scholar

    Sun J, Ma L, Yang Z G.Determination of heavy metal elements in various soils by microwave assisted extraction with acid mixture and ICP-MS[J].Environmental Chemistry, 2015, 34(6):1057-1063.

    Google Scholar

    [21] 梁淑轩, 王欣, 吴虹, 等.微波消解/ICP-MS测定水系沉积物中的9种重金属元素[J].光谱学与光谱分析, 2012, 32(3):809-812.

    Google Scholar

    Liang S X, Wang X, Wu H, et al.Determination of 9 heavy metal elements in sediment by ICP-MS using microwave digestion for sample preparation[J].Spectroscopy and Spectral Analysis, 2012, 32(3):809-812.

    Google Scholar

    [22] 王志广, 陈发荣, 郑立, 等.微波消解-电感耦合等离子体质谱同时测定普里兹湾沉积物中微量元素[J].分析试验室, 2012, 31(8):50-54.

    Google Scholar

    Wang Z G, Chen F R, Zheng L, et al.Simultaneous determination of trace elements in sediments of Prydz Bay by microwave digestion-inductively coupled plasma mass spectrometry[J].Chinese Journal of Analysis Laboratory, 2012, 31(8):50-54.

    Google Scholar

    [23] 王君玉, 吴葆存, 李志伟, 等.敞口酸溶-电感耦合等离子体质谱法同时测定地质样品中45个元素[J].岩矿测试, 2011, 30(4):440-445.

    Google Scholar

    Wang J Y, Wu B C, Li Z W, et al.Determination of elemental content in geological samples by one-time acid dissolution and inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2011, 30(4):440-445.

    Google Scholar

    [24] 贾建丽, 于妍, 王晨.环境土壤学[M].北京:地质出版社, 2012:9-37.

    Google Scholar

    Jia J L, Yu Y, Wang C.Environmental pedology[M].Beijing:Chemical Industry Press, 2012:9-37.

    Google Scholar

    [25] 贾维斯K E, 格雷A L, 霍克R S(著).尹明, 李冰(译).电感耦合等离子体质谱手册[M].北京:原子能出版社, 1997:120-124.

    Google Scholar

    Jarvis K E, Glay A L, Hawk R S (Editor).Yin M, Li B(Translator).Handbook of inductively coupled plasma-mass spectrometry[M].Beijing:Geological Publishing House, 1997:120-124.

    Google Scholar

    [26] 《岩石矿物分析》编委会.岩石矿物分析(第四版第四分册)[M].北京: 地质出版社, 2011: 807-809.

    Google Scholar

    [27] The editorial committee of Rock and Mineral Analysis.Rock and mineral analysis (The fourth edition:Vol.Ⅳ)[M].Beijing:Geological Publishing House, 2011:807-809.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(5)

Article Metrics

Article views(2679) PDF downloads(172) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint