Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 6
Article Contents

Kun SHAO, Gai-hong ZHAO, Chao-hui ZHAO. Enhancement of Pb and Cd Adsorption in Water Samples by Magnetite Using Humic Acid as Modifier[J]. Rock and Mineral Analysis, 2019, 38(6): 715-723. doi: 10.15898/j.cnki.11-2131/td.201901250017
Citation: Kun SHAO, Gai-hong ZHAO, Chao-hui ZHAO. Enhancement of Pb and Cd Adsorption in Water Samples by Magnetite Using Humic Acid as Modifier[J]. Rock and Mineral Analysis, 2019, 38(6): 715-723. doi: 10.15898/j.cnki.11-2131/td.201901250017

Enhancement of Pb and Cd Adsorption in Water Samples by Magnetite Using Humic Acid as Modifier

  • BACKGROUNDMagnetite is widely used as a green and cheap mineral material to adsorb heavy metals in water samples, but it has the disadvantages of low adsorption capacity, poor selectivity and easy reunion. Surface modification of magnetite could overcome these problems and improve its adsorption properties. OBJECTIVESTo enhance the adsorption properties of magnetite by using a humic acid modifier. METHODSThe morphology and structure of magnetite and humic acid-modified magnetite were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The effect of conditions such as optimal pH and adsorption time on Pb2+ and Cd2+ adsorption rate were investigated by static equilibrium experiment. RESULTSCarboxyl and hydroxyl groups in humic acid were successfully absorbed onto the surface of magnetite. At room temperature, the initial pH of the solution had little effect on the adsorption rate of Pb2+, but had a greater influence on Cd2+. When pH=7, the adsorption rates of Pb2+ and Cd2+ reached 95%. The optimal adsorption equilibrium time of Pb2+ and Cd2+ with initial mass concentration of 10mg/L was 360 minutes, and the adsorption process accords with the quasi-second-order kinetic equation. The order of competitive adsorption was Pb2+ followed by Cd2+. The Langmuir isothermal adsorption model yielded maximum adsorption capacity of Pb2+ and Cd2+ of 39.27mg/g and 28.95mg/g, respectively. CONCLUSIONSThe adsorption capacity of humic acid-modified magnetite was higher than that of magnetite, indicating that the ability of humic acid-modified magnetite was enhanced to adsorb Pb2+ and Cd2+ in water samples.
  • 加载中
  • [1] Meneguin J G, Moisésb M P, Karchiyappan T, et al.Pre-paration and characterization of calcium treated bentonite clay and its application for the removal of lead and cadmium ions:Adsorption and thermodynamic modeling[J].Process Safety and Environmental Protection, 2017, 111:244-252. doi: 10.1016/j.psep.2017.07.005

    CrossRef Google Scholar

    [2] 刘金燕, 刘立华, 薛建荣, 等.重金属废水吸附处理的研究进展[J].环境化学, 2018, 37(9):2016-2024.

    Google Scholar

    Liu J Y, Liu L H, Xue J R, et al.Research progress on treatment of heavy metal wastewater by adsorption[J].Environmental Chemistry, 2018, 37(9):2016-2024.

    Google Scholar

    [3] Bhunia P, Chatterjee S, Rudra P, et al.Chelating poly-acrylonitrile beads for removal of lead and cadmium from wastewater[J].Separation and Purification Technology, 2018, 193(20):202-213.

    Google Scholar

    [4] Tabesh S, Davar F, Loghman-Estarki M R.Preparation of γ-Al2O3 nanoparticles using modified sol-gel method and its use for the adsorption of lead and cadmium ions[J].Journal of Alloys and Compounds, 2018, 730(5):441-449.

    Google Scholar

    [5] Lu M M, Zhang Y B, Zhou Y L, et al.Adsorption-desorption characteristics and mechanisms of Pb(Ⅱ) on natural vanadium, titanium-bearing magnetite-humic acid magnetic adsorbent[J].Powder Technology, 2019, 344(15):947-958.

    Google Scholar

    [6] Karimpour M, Ashrafia S D, Taghavi K.Adsorption of cadmium and lead onto live and dead cell mass of pseudomonas aeruginosa:A dataset[J].Data in Brief, 2018, 18:1185-1192. doi: 10.1016/j.dib.2018.04.014

    CrossRef Google Scholar

    [7] 张连科, 王洋, 王维大, 等.磁性羟基磷灰石/生物炭复合材料的制备及对Pb2+的吸附性能[J].环境科学学报, 2018, 38(11):4360-4370.

    Google Scholar

    Zhang L K, Wang Y, Wang W D, et al.Preparation of magnetic hydroxyapatite/biochar composite and its adsorption behavior of Pb2+ and recycling performance[J].Acta Scientiae Circumstantiae, 2018, 38(11):4360-4370.

    Google Scholar

    [8] 鲁安怀.矿物学环境属性研究新进展[J].岩石矿物学杂志, 2015, 34(6):795-802. doi: 10.3969/j.issn.1000-6524.2015.06.001

    CrossRef Google Scholar

    Lu A H.The new advance of mineralogical environmental attributes[J].Acta Petrologica et Mineralogica, 2015, 34(6):795-802. doi: 10.3969/j.issn.1000-6524.2015.06.001

    CrossRef Google Scholar

    [9] Chen L Y, Wu P X, Chen M Q, et al.Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead[J].Applied Clay Science, 2018, 159:74-82. doi: 10.1016/j.clay.2017.12.050

    CrossRef Google Scholar

    [10] 王喆, 谭科艳, 梁明会, 等.天然丝光沸石表面重构改性及其在水中去除重金属的应用[J].岩矿测试, 2018, 37(6):678-686.

    Google Scholar

    Wang Z, Tan K Y, Liang M H, et al.Surface modification of natural mordenite and its application in removal of heavy metals from aqueous solution[J].Rock and Mineral Analysis, 2018, 37(6):678-686.

    Google Scholar

    [11] Peng C, Chai L Y, Song Y X, et al.Thermodynamics, kinetics and mechanism analysis of Cu(Ⅱ) adsorption by in-situ synthesized struvite crystal[J].Journal of Central South University, 2018, 25(5):1033-1042. doi: 10.1007/s11771-018-3803-y

    CrossRef Google Scholar

    [12] 邵金秋, 温其谦, 阎秀兰, 等.天然含铁矿物对砷的吸附效果及机制[J].环境科学, 2019, DOI:10.13227/j.hjkx.201903023.

    CrossRef Google Scholar

    Shao J Q, Wen Q Q, Yan X L, et al.Comparison of adsorption and mechanism of arsenic by natural iron-containing minerals[J].Environmental Science, 2019, DOI:10.13227/j.hjkx.201903023.

    CrossRef Google Scholar

    [13] 崔晋艳, 钱天伟, 丁庆伟, 等.纳米级天然黄铁矿去除水中Cr6+, Cd2+和Pb2+[J].环境工程学报, 2016, 10(12):7103-7108. doi: 10.12030/j.cjee.201507166

    CrossRef Google Scholar

    Cui J Y, Qian T W, Ding Q W, et al.Adsorption of Cr6+, Cd2+ and Pb2+ from aqueous solutions by nanoscale pyrite[J].Chinese Journal of Environmental Engineering, 2016, 10(12):7103-7108. doi: 10.12030/j.cjee.201507166

    CrossRef Google Scholar

    [14] Ramirez-Muñiz K, Perez-Rodriguez F, Rangel-Mendez R.Adsorption of arsenic onto an environmental friendly goethite-polyacrylamide composite[J].Journal of Molecular Liquids, 2018, 265(15):253-260.

    Google Scholar

    [15] 吴昆明, 郭华明, 魏朝俊.改性磁铁矿对水体中砷的吸附特性研究[J].岩矿测试, 2017, 36(6):624-632.

    Google Scholar

    Wu K M, Guo H M, Wei C J.Adsorption characteristics of arsenic in water by modified magnetite[J].Rock and Mineral Analysis, 2017, 36(6):624-632.

    Google Scholar

    [16] 赵谨, 鲁安怀, 姜浩, 等.天然磁铁矿处理含Hg(Ⅱ)废水实验研究[J].岩石矿物学杂志, 2001, 20(4):499-554.

    Google Scholar

    Zhao J, Lu A H, Jiang H, et al.The disposal of Hg(Ⅱ) bearing wastewater by natural magnetite[J].Acta Petrologica et Mineralogica, 2001, 20(4):499-554.

    Google Scholar

    [17] 吴昆明, 郭华明, 魏朝俊.天然磁铁矿化学改性及其在水体除砷中的应用[J].岩矿测试, 2017, 36(1):32-39.

    Google Scholar

    Wu K M, Guo H M, Wei C J.Chemical modification of natural magnetite and its application in arsenic removal from a water environment[J].Rock and Mineral Analysis, 2017, 36(1):32-39.

    Google Scholar

    [18] 聂果, 王永杰, 李军.环境矿物材料吸附重金属的有机改性研究[J].环境科技, 2015, 28(2):76-80. doi: 10.3969/j.issn.1674-4829.2015.02.018

    CrossRef Google Scholar

    Nie G, Wang Y J, Li J.The organic modification research of environmental mineral material in adsorption of heavy metal[J].Environmental Science and Technology, 2015, 28(2):76-80. doi: 10.3969/j.issn.1674-4829.2015.02.018

    CrossRef Google Scholar

    [19] Zhao J J, Niu Y Z, Ren B, et al.Synthesis of schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(Ⅱ) and Cd(Ⅱ) from aqueous solution[J].Chemical Engineering Journal, 2018, 347(1):574-584.

    Google Scholar

    [20] Hu D, Wan X D, Li X H, et al.Synthesis of water-dispersible poly-l-lysine-functionalized magnetic Fe3O4-(GO-MWCNTs) nanocomposite hybrid with a large surface area for high-efficiency removal of tartrazine and Pb(Ⅱ)[J].International Journal of Biological Macromolecules, 2017, 105(3):1611-1621.

    Google Scholar

    [21] 陆中桂, 黄占斌, 李昂, 等.腐植酸对重金属铅镉的吸附特征[J].环境科学学报, 2018, 38(9):3721-3729.

    Google Scholar

    Lu Z G, Huang Z B, Li A, et al.The adsorption behavior of lead and cadmium by humic acid[J].Acta Scientiae Circumstantiae, 2018, 38(9):3721-3729.

    Google Scholar

    [22] Zhang W, Zheng J, Zheng P, et al.The roles of humic substances in the interactions of phenanthrene and heavy metals on the bentonite surface[J].Journal of Soils and Sediments, 2015, 15(7):1463-1472. doi: 10.1007/s11368-015-1112-8

    CrossRef Google Scholar

    [23] 张彩凤, 李凌燕.腐植酸对铜、锌、钼和锰的吸附研究[J].腐植酸, 2009, 6(1):11-15.

    Google Scholar

    Zhang C F, Li L Y.Study on adsorption of Cu, Zn, Mo and Mn by humic acid[J].Humic Acid, 2009, 6(1):11-15.

    Google Scholar

    [24] 朱丽珺, 张金池, 宰德欣, 等.腐殖质对Cu2+和Pb2+的吸附特性[J].南京林业大学学报, 2007, 31(4):73-76.

    Google Scholar

    Zhu L J, Zhang J C, Zai D X, et al.Study on the adsorption of heavy metal Cu2+, Pb2+by humus[J].Journal of Nanjing Forestry University, 2007, 31(4):73-76.

    Google Scholar

    [25] Khaleel A I, Raoof A, Tuzen M.Solid phase extraction containing multi-walled carbon nanotubes and eggshell membrane as adsorbent for ICP-OES determination of Pb(Ⅱ) and Cd(Ⅱ) in various water and orange fruit (peel and pulp) samples[J].Atomic Spectroscopy, 2018, 39(6):235-241.

    Google Scholar

    [26] 汤智, 赵晓丽, 吴丰昌, 等.不同来源腐殖酸在纳米四氧化三铁上的吸附及对其沉降性的影响[J].环境化学, 2015, 34(8):1520-1528.

    Google Scholar

    Tang Z, Zhao X L, Wu F C, et al.The interaction between Fe3O4 nanoparticle and different source humic acid, and the influence on nanoparticle suspension[J].Environmental Chemistry, 2015, 34(8):1520-1528.

    Google Scholar

    [27] 张娟, 邓慧萍, 薮谷智規, 等.新型磁性聚谷氨酸吸附剂对水中Pb2+的吸附去除[J].环境科学, 2011, 32(11):3348-3356.

    Google Scholar

    Zhang J, Deng H P, Yabutani T, et al.Study of the removal of Pb2+from aqueous solution by poly-γ-glutamic acid coated magnetic nanoparticles[J].Environmental Science, 2011, 32(11):3348-3356.

    Google Scholar

    [28] 梁咏梅, 刘伟, 马军.pH和腐植酸对高铁酸盐去除水中铅、镉的影响[J].哈尔滨工业大学学报, 2003, 35(5):545-548. doi: 10.3321/j.issn:0367-6234.2003.05.008

    CrossRef Google Scholar

    Liang Y M, Liu W, Ma J.Effect of pH and humic acid on removal of lead and cadmium by combined ferrate pretreatment and alum coagulation[J].Journal of Harbin Institute of Technology, 2003, 35(5):545-548. doi: 10.3321/j.issn:0367-6234.2003.05.008

    CrossRef Google Scholar

    [29] 邵坤, 赵改红, 李刚.改性磁铁矿对矿区土壤中镉的吸附性能及机理[J].矿产保护与利用, 2019, 39(2):89-94.

    Google Scholar

    Shao K, Zhao G H, Li G.Adsorption properties and mechanism of modified magnetite for cadmium removal from mined soil[J].Conservation and Utilization of Mineral Resources, 2019, 39(2):89-94.

    Google Scholar

    [30] Li Y H, Ding J, Luan Z, et al.Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes[J].Carbon, 2003, 41(14):2787-2792. doi: 10.1016/S0008-6223(03)00392-0

    CrossRef Google Scholar

    [31] 姜彬慧, 丽丽, 赵研, 等.pH值对天然磁铁矿吸附水中Pb2+的影响及吸附机制研究[J].功能材料, 2013, 23(44):3392-3396.

    Google Scholar

    Jiang B H, Li L, Zhao Y, et al.Adsorption mechanism of lead(Ⅱ) ions on natural magnetite from aqueous solution and effect of pH value[J].Functional Materials, 2013, 23(44):3392-3396.

    Google Scholar

    [32] 罗文倩, 魏世强.镉在针铁矿、针铁矿-腐植酸复合胶体中吸附解吸行为比较研究[J].农业环境科学学报, 2009, 28(5):897-902. doi: 10.3321/j.issn:1672-2043.2009.05.006

    CrossRef Google Scholar

    Luo W Q, Wei S Q.Adsorption and desorption behaviors of cadmium on/from goethite and its compound colloid with humic acids[J].Journal of Agro-Environment Science, 2009, 28(5):897-902. doi: 10.3321/j.issn:1672-2043.2009.05.006

    CrossRef Google Scholar

    [33] Wu P X, Zhang Q, Dai Y P, et al.Adsorption of Cu(Ⅱ), Cd(Ⅱ) and Cr(Ⅲ) ions from aqueous solutions on humic acid modified Ca-montmorillonite[J].Geoderma, 2011, 164(3-4):215-219. doi: 10.1016/j.geoderma.2011.06.012

    CrossRef Google Scholar

    [34] 周挺进, 杨丽珍, 徐焕辉, 等.累托石/腐植酸微球对水中Cd2+的吸附及动力学研究[J].环境科学与技术, 2010, 33(10):53-56.

    Google Scholar

    Zhou T J, Yang L Z, Xu H H, et al.Kinetics study on adsorption of Cd2+ in water on rectorite/humic acid microspheres[J].Environmental Science & Technology, 2010, 33(10):53-56.

    Google Scholar

    [35] 张如玉, 刘海波, 邹雪华, 等.小麦秸秆驱动菱铁矿热解制备磁性生物质碳及其吸附Cd2+活性[J].环境科学, 2017, 38(8):3519-3528.

    Google Scholar

    Zhang R Y, Liu H B, Zou X H, et al.Preparation of magnetic biomass carbon by thermal decomposition of siderite driven by wheat straw and its adsorption on cadmium[J].Environment Science, 2017, 38(8):3519-3528.

    Google Scholar

    [36] 陈荣平, 张银龙, 马爱军, 等.腐植酸改性及其对镉的吸附特性[J].南京林业大学学报(自然科学版), 2014, 38(4):102-106.

    Google Scholar

    Chen R P, Zhang Y L, Ma A J, et al.Study on the modification of humic acid and its adsorption to cadmium[J].Journal of Nanjing Forestry University (Natural Sciences Edition), 2014, 38(4):102-106.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(2225) PDF downloads(113) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint