Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 3
Article Contents

Ming-hui QI, Jun-jun LI, Qian CAO. The Pore Structure Characterization of Shale Based on Scanning Electron Microscopy and JMicroVision[J]. Rock and Mineral Analysis, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008
Citation: Ming-hui QI, Jun-jun LI, Qian CAO. The Pore Structure Characterization of Shale Based on Scanning Electron Microscopy and JMicroVision[J]. Rock and Mineral Analysis, 2019, 38(3): 260-269. doi: 10.15898/j.cnki.11-2131/td.201901160008

The Pore Structure Characterization of Shale Based on Scanning Electron Microscopy and JMicroVision

  • BACKGROUNDThe pore characteristics of shale are one of the key parameters for evaluation of the shale reservoir capacity. Scanning Electron Microscopy (SEM) has been widely used to describe the pore characteristics of shale. However, the classification of micro-pore types in mud shale reservoirs in the literature was relatively diverse, and the quantitative characterization of pore based on SEM was relatively lacking. OBJECTIVESTo classify the pore types and quantitatively characterize these pores in shale. METHODS18 shale samples were selected as the research object in this study. Based on the form, position and origin of pores observed by argon ion polishing and Scanning Electron Microscopy, the types of different pores in the sample were classified. By using JMicroVision image analysis software, the pore characteristics including the number of pore types, pore size, face rate, shape coefficient, probability entropy and other parameters were quantitatively described. RESULTSThe inter-crystal (particle) pores and organic pores were the most developed, followed by intra-crystal (particle) pores and crystal gap inter-crystal (particle) pores. The sizes of pore were mainly nanometer. The probabilistic entropy of intra-crystal (particle) pores and organic pores were mainly distributed between 0.5 and 0.7, with a different shape coefficient distribution. The shape coefficients of organic pores were mainly distributed between 0.6 and 0.7, and their shape were mainly oval or nearly circular. The shape coefficient of intra-crystal (particle) pores and inter-crystal (particle) pores were mainly between 0.3 and 0.7, which were mainly affected by the original pore morphology, compaction and dissolution. CONCLUSIONSThe combination of SEM and JMicroVision is an effective means to quantitatively study the development characteristics of different types of micropores. This work has laid a foundation for the study of the genesis and evolution of micropores.
  • 加载中
  • [1] Mastalerz M, Schimmelmann A, Drobniak A, et al.Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient:Insights from organic petrology, gas adsorption, and mercury intrusion[J].AAPG Bulletin, 2013, 97(10):1621-1643. doi: 10.1306/04011312194

    CrossRef Google Scholar

    [2] 王香增, 张金川, 曹金舟, 等.陆相页岩气资源评价初探:以延长直罗-下寺湾区中生界长7段为例[J].地学前缘, 2012, 19(2):192-197.

    Google Scholar

    Wang X Z, Zhang J C, Cao J Z, et al.A preliminary discussion on evaluation of continental shale gas resources:A case study of Chang 7 of Mesozoic Yanchang Formation in Zhiluo-Xiasiwan of Yanchang[J].Earth Science Frontiers, 2012, 19(2):192-197.

    Google Scholar

    [3] 吴松涛, 朱如凯, 崔京钢, 等.鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J].石油勘探与开发, 2015, 42(2):167-176.

    Google Scholar

    Wu S T, Zhu R K, Cui J G, et al.Characteristics of lacustrine shale porosity evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2015, 42(2):167-176.

    Google Scholar

    [4] 李晋宁.泥页岩储层孔隙结构表征和连通方式研究[D].南京: 南京大学, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10284-1017095378.htm

    Google Scholar

    Li J N.Study on Pore Structure Characteristics and Connectivity of Shale Reservoir[D].Nanjing: Nanjing University, 2017.

    Google Scholar

    [5] 苑丹丹, 卢双舫, 陈方文, 等.渝东南地区彭页1井泥页岩微观孔隙结构特征[J].特种油气藏, 2016, 23(1):49-53. doi: 10.3969/j.issn.1006-6535.2016.01.011

    CrossRef Google Scholar

    Yuan D D, Lu S F, Chen F W, et al.Shale microscopic pore structure characterization in Well Pengye1 of Southeast Chongqing[J].Special Oil and Gas Reservoir, 2016, 23(1):49-53. doi: 10.3969/j.issn.1006-6535.2016.01.011

    CrossRef Google Scholar

    [6] 杨峰, 宁正福, 胡昌篷, 等.页岩储层微观孔隙结构特征[J].石油学报, 2013, 34(2):301-311.

    Google Scholar

    Yang F, Ning Z F, Hu C P, et al.Characterization of microscopic pore structures in shale reservoirs[J].Acta Petrolei Sinica, 2013, 34(2):301-311.

    Google Scholar

    [7] 王玉满, 董大忠, 杨桦, 等.川南下志留统龙马溪组页岩储集空间定量表征[J].中国科学(地球科学), 2014, 44(6):1348-1356.

    Google Scholar

    Wang Y M, Dong D Z, Yang H, et al.Quantitative characterization of reservoir space in the Lower Silurian Longmaxi Shale, Southern Sichuan, China[J].Science China:Earth Sciences, 2014, 57:313-322.

    Google Scholar

    [8] 王羽, 金婵, 汪丽华, 等.应用氩离子抛光-扫描电镜方法研究四川九老洞组页岩微观孔隙特征[J].岩矿测试, 2015, 34(3):278-285.

    Google Scholar

    Wang Y, Jin C, Wang L H, et al.Characterization of pore structures of Jiulaodong Formation shale in the Sichuan Basin by SEM with Ar-ion milling[J].Rock and Mineral Analysis, 2015, 34(3):278-285.

    Google Scholar

    [9] 俞雨溪, 罗晓容, 雷裕红, 等.陆相页岩孔隙结构特征研究——以鄂尔多斯盆地延长组页岩为例[J].天然气地球科学, 2016, 27(4):716-726.

    Google Scholar

    Yu Y X, Luo X R, Lei Y H, et al.Characterization of lacustrine shale pore structure:An example from the Upper-Triassic Yanchang Formation, Ordos Basin[J].Naural Gas Geoscience, 2016, 27(4):716-726.

    Google Scholar

    [10] 张林晔, 李钜源, 李政, 等.北美页岩油气研究进展及对中国陆相页岩油气勘探的思考[J].地球科学进展, 2014, 29(6):700-711.

    Google Scholar

    Zhang L Y, Li J Y, Li Z, et al.Advance in shale oil/gas research in North America and considerations on exploration for continental shale oil/gas in China[J].Advances in Earth Science, 2014, 29(6):700-711.

    Google Scholar

    [11] Keller L M, Schuetz P, Erni R, et al.Characterization of multi-scale microstructural features in Opalinus clay[J].Microporous and Mesoporous Materials, 2012, 170(4):84-90.

    Google Scholar

    [12] 张磊磊, 陆正元, 王军, 等.渤海湾盆地沾化凹陷沙三下亚段页岩油层段微观孔隙结构[J].石油与天然气地质, 2016, 37(1):80-86.

    Google Scholar

    Zhang L L, Lu Z Y, Wang J, et al.Microscopic pore structure of shale oil reservoirs in the Lower 3rd Member of Shahejie Formation in Zhanhua Sag, Bohai Bay Basin[J].Oil & Gas Geology, 2016, 37(1):80-86.

    Google Scholar

    [13] 白名岗, 夏响华, 张聪, 等.场发射扫描电镜及PerGeos系统在安页1井龙马溪组页岩有机质孔隙研究中的联合应用[J].岩矿测试, 2018, 37(3):225-234.

    Google Scholar

    Bai M G, Xia X H, Zhang C, et al.Study on shale organic porosity in the Longmaxi Formation, AnYe -1 Well using field emission-scanning electron microscopy and PerGeos system[J].Rock and Mineral Analysis, 2018, 37(3):225-234.

    Google Scholar

    [14] Jin L X, Mathur R, Rother G, et al.Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering[J].Chemical Geology, 2013, 256(2):50-63.

    Google Scholar

    [15] Chen Q, Zhang J, Tang X, et al.Relationship between pore type and pore size of marine shale:An example from the Sinian-Cambrian Formation, Upper Yangtze region, South China[J].International Journal of Coal Geology, 2016, 158:13-28. doi: 10.1016/j.coal.2016.03.001

    CrossRef Google Scholar

    [16] 庞河清, 曾焱, 刘成川, 等.基于氮气吸附-核磁共振-氩离子抛光场发射扫描电镜研究川西须五段泥质岩储层孔隙结构[J].岩矿测试, 2017, 36(1):66-74.

    Google Scholar

    Pang H Q, Zeng Y, Liu C C, et al.Investigation of pore structure of a argillaceous rocks reservoir in the 5th member of Xujiahe Formation in Western Sichuan, using NAM, NMR and AIP-FESEM[J].Rock and Mineral Analysis, 2017, 36(1):66-74.

    Google Scholar

    [17] 帅琴, 黄瑞成, 高强, 等.页岩气实验测试技术现状与研究进展[J].岩矿测试, 2012, 31(6):931-938. doi: 10.3969/j.issn.0254-5357.2012.06.003

    CrossRef Google Scholar

    Shuai Q, Huang R C, Gao Q, et al.Research development of analytical techniques for shale gas[J].Rock and Mineral Analysis, 2012, 31(6):931-938. doi: 10.3969/j.issn.0254-5357.2012.06.003

    CrossRef Google Scholar

    [18] 焦堃.煤和泥页岩纳米孔隙的成因、演化机制与定量表征[D].南京: 南京大学, 2014.http://cdmd.cnki.com.cn/Article/CDMD-10284-1015313113.htm

    Google Scholar

    Jiao K.The Characterization, Genesis and Evolution of Nanopores in Coals[D].Nanjing: Nanjing University, 2014.

    Google Scholar

    [19] 蒋祺, 康志宏, 黄文辉, 等.富含有机质泥页岩孔隙结构与储集空间类型分析[J].辽宁工程技术大学学报(自然科学版), 2016, 35(9):908-913.

    Google Scholar

    Jiang Q, Kang Z H, Huang W H, et al.Analysis of the organic-rich shale pore structure of reservoir space[J].Journal of Liaoning Technical University (Natural Science), 2016, 35(9):908-913.

    Google Scholar

    [20] 聂海宽, 张金川.页岩气储层类型和特征研究——以四川盆地及其周缘下古生界为例[J].石油实验地质, 2011, 33(3):219-225. doi: 10.3969/j.issn.1001-6112.2011.03.001

    CrossRef Google Scholar

    Nie H K, Zhang J C.Types and characteristics of shale gas reservoir:A case study of Lower Paleozoic in and around Sichuan Basin[J].Petroleum Geology & Experiment, 2011, 33(3):219-225. doi: 10.3969/j.issn.1001-6112.2011.03.001

    CrossRef Google Scholar

    [21] Loucks R G, Reed R M, Ruppel S C, et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrockpores[J].AAPG Bulletin, 2012, 96(6):1071-1098. doi: 10.1306/08171111061

    CrossRef Google Scholar

    [22] 于炳松.页岩气储层孔隙分类与表征[J].地学前缘, 2013, 20(4):211-220.

    Google Scholar

    Yu B S.Classification and characterization of gas shale pore system[J].Earth Science Frontiers, 2013, 20(4):211-220.

    Google Scholar

    [23] 曹茜, 周文, 陈文玲, 等.鄂尔多斯盆地南部延长组长7段陆相页岩气地层孔隙类型、尺度及成因分析[J].矿物岩石, 2015, 35(2):90-97.

    Google Scholar

    Cao Q, Zhou W, Chen W L, et al.Analysis of pore types, sizes and genesis in continental shale gas reservoir of Chang 7 of Yanchang Formation, Odros Basin[J].Mineral Petrology, 2015, 35(2):90-97.

    Google Scholar

    [24] Cao Q, Zhou W, Deng H, et al.Classification and controlling factors of organic pores in continental shale gas reservoirs based on laboratory experimental results[J].Journal of Natural Gas Science and Engineering, 2015, 27:1381-1388. doi: 10.1016/j.jngse.2015.10.001

    CrossRef Google Scholar

    [25] 王香增, 范柏江, 张丽霞, 等.陆相页岩气的储集空间特征及赋存过程——以鄂尔多斯盆地陕北斜坡构造带延长探区延长组长7段为例[J].石油与天然气地质, 2015, 36(4):651-658.

    Google Scholar

    Wang X Z, Fan B J, Zhang L X, et al.Reservoir space characteristics and charging process of Lacustrine shale gas-A case study of the Chang 7 member in Yanchang Block in Shanbei slope of Ordos Basin[J].Oil & Gas Geology, 2015, 36(4):651-658.

    Google Scholar

    [26] 于炳松.页岩气储层孔隙分类与表征[J].地学前缘, 2013, 20(4):211-220.

    Google Scholar

    Yu B S.Classification and characterization of gas shale pore system[J].Earth Science Frontiers, 2013, 20(4):211-220.

    Google Scholar

    [27] 张盼盼, 刘小平, 王雅杰, 等.页岩纳米孔隙研究新进展[J].地球科学进展, 2014, 29(11):1242-1249. doi: 10.11867/j.issn.1001-8166.2014.11.1242

    CrossRef Google Scholar

    Zhang P P, Liu X P, Wang Y J, et al.Research progress in shale nanopores[J].Advances in Earth Science, 2014, 29(11):1242-1249. doi: 10.11867/j.issn.1001-8166.2014.11.1242

    CrossRef Google Scholar

    [28] 焦淑静, 张慧, 薛东川, 等.泥页岩孔隙类型、形态特征及成因研究[J].电子显微学报, 2015, 34(5):422-427.

    Google Scholar

    Jiao S J, Zhang H, Xue D C, et al.Study on morphological characteristics of micropores and microcracks in shale[J].Journal of Chinese Electron Microscopy Society, 2015, 34(5):422-427.

    Google Scholar

    [29] 伍岳, 樊太亮, 蒋恕, 等.海相页岩储层微观孔隙体系表征技术及分类方案[J].地质科技情报, 2014, 33(4):92-97.

    Google Scholar

    Wu Y, Fan T L, Jiang S, et al.Characterizing techniques and classification methods for microscope pore system in marine shale reservoir[J].Geological Science and Technology Information, 2014, 33(4):92-97.

    Google Scholar

    [30] Clarkson C R, Solano N, Bustin R M, et al.Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J].Fuel, 2013, 103:606-616. doi: 10.1016/j.fuel.2012.06.119

    CrossRef Google Scholar

    [31] 耳闯, 赵靖舟, 王芮, 等.鄂尔多斯盆地三叠系延长组页岩孔隙特征及发育机制[J].天然气地球科学, 2016, 27(7):1202-1214.

    Google Scholar

    Er C, Zhao J Z, Wang R, et al.Characteristics and occurrence mechanism of organic-rich shale in the Triassic Yanchang Formation, Ordos Basin, China[J].Natural Gas Geoscience, 2016, 27(7):1202-1214.

    Google Scholar

    [32] Pommer M, Milliken K.Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, Southern Texas[J].AAPG Bulletin, 2015, 99(9):1713-1744. doi: 10.1306/03051514151

    CrossRef Google Scholar

    [33] 姚军, 赵秀才.数字岩心及孔隙级渗流模拟理论[M].北京:石油工业出版社, 2010:125-128.

    Google Scholar

    Yao J, Zhao X C.Digital Core and Pore Level Percolation Simulation Theory[M].Beijing:Petroleum Industry Press, 2010:125-128.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(2)

Article Metrics

Article views(2247) PDF downloads(185) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint