Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 3
Article Contents

Cheng-lin ZHU, Hua-jian WANG, Yun-tao YE, Xiao-mei WANG, Jia-xuan HUANG, Yu-mei ZHU, Rui-dong YANG. The Formation Mechanism and Geological Significance of Graptolite from the Longmaxi Formation: Constraints from in situ Multi-element Imaging Analysis[J]. Rock and Mineral Analysis, 2019, 38(3): 245-259. doi: 10.15898/j.cnki.11-2131/td.201810110113
Citation: Cheng-lin ZHU, Hua-jian WANG, Yun-tao YE, Xiao-mei WANG, Jia-xuan HUANG, Yu-mei ZHU, Rui-dong YANG. The Formation Mechanism and Geological Significance of Graptolite from the Longmaxi Formation: Constraints from in situ Multi-element Imaging Analysis[J]. Rock and Mineral Analysis, 2019, 38(3): 245-259. doi: 10.15898/j.cnki.11-2131/td.201810110113

The Formation Mechanism and Geological Significance of Graptolite from the Longmaxi Formation: Constraints from in situ Multi-element Imaging Analysis

More Information
  • BACKGROUNDThe black shale of the Longmaxi Formation in the Upper Yangtze region is rich in graptolites. Most of them were preserved as a carbonaceous film, and enriched in organic-rich layers. Previous research focuses mainly on the graptolite morphology and evolution process after diagenesis, but the direct evidence for the fossil formation is still lacking. OBJECTIVESTo explore the formation mechanism of graptolite in the Longmaxi Formation and its geological significance on organic matter enrichment. METHODSLaser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) was used for the in situ multi-element imaging of graptolites and surrounding rocks from the Longmaxi Formation of the N203 well. RESULTSAnalysis of the distribution and enrichment degree of major ore-forming elements indicates that Mg, Al, Si, Fe were rich in the carbonaceous film surface of graptolite, with a enrichment degree ranging from 1.5 to 10. However, Sr/Ba values (1.4-2.3) of the carbonaceous film type graptolite were lower than that of the surrounding rocks (>5.0). This indicated that embedding by clay minerals was the main process of graptolite preservation. The sulfidic micro-environment caused by embedding of clay minerals benefited the pyritization of the graptolite organism. Combing with the vertical variation and correlation analysis of the cross-section graptolite ratio, organic matter, pyrite, clay mineral content and δ13Corg value, it can be concluded that the flourishing of the microbial mat in early stage and sulfate-reducing bacteria in later stage consumed oxygen in the pore water and caused anoxic bottom water, and should be the main reason of massive burial of graptolite and organic matter. CONCLUSIONSThe result revealed the burial and mineralization mechanism of graptolite in the Longmaxi Formation, and also provided a new method for studying the controlling factors of organic matter enrichment and black shale formation.
  • 加载中
  • [1] Loydell D K.Graptolite biozone correlation charts[J].Geological Magazine, 2012, 149(1):124-132. doi: 10.1017/S0016756811000513

    CrossRef Google Scholar

    [2] Underwood C J.Graptolite preservation and deformation[J].Palaios, 1992:178-186.

    Google Scholar

    [3] Chen X, Rong J Y, Mitchell C E, et al.Late Ordovician to earliest Silurian graptolite and brachiopod biozonation from the Yangtze region, South China, with a global correlation[J].Geological Magazine, 2000, 137(6):623-650. doi: 10.1017/S0016756800004702

    CrossRef Google Scholar

    [4] 樊隽轩, Melchin M J, 陈旭, 等.华南奥陶-志留系龙马溪组黑色笔石页岩的生物地层学[J].中国科学(地球科学), 2012, 42(1):130-139.

    Google Scholar

    Fan J X, Melchin M J, Chen X, et al.Biostratigraphy and geography of the Ordovician-Silurian Lungmachi black shales in South China[J].Science China (Earth Sciences), 2011, 54(12):1854-1863.

    Google Scholar

    [5] 陈清, 樊隽轩, 张琳娜, 等.下扬子区奥陶纪晚期古地理演变及华南"台-坡-盆"格局的打破[J].中国科学(地球科学), 2018, 48(6):767-777.

    Google Scholar

    Chen Q, Fan J X, Zhang L N, et al.Paleogeographic evolution of the Lower Yangtze region and the break of the "platform-slope-basin" pattern during the Late Ordovician[J].Science China (Earth Sciences), 2018, 61(5):625-636.

    Google Scholar

    [6] 陈旭, 樊隽轩, 王文卉, 等.黔渝地区志留系龙马溪组黑色笔石页岩的阶段性渐进展布模式[J].中国科学(地球科学), 2017, 47(6):720-732.

    Google Scholar

    Chen X, Fan J X, Wang W H, et al.Stage-progressive distribution pattern of the Lungmachi black graptolitic shales from Guizhou to Chongqing, Central China[J].Science China (Earth Sciences), 2017, 60(6):1133-1146.

    Google Scholar

    [7] 陈旭, 陈清, 甄勇毅, 等.志留纪初宜昌上升及其周缘龙马溪组黑色笔石页岩的圈层展布模式[J].中国科学(地球科学), 2018, 48(9):1198-1206.

    Google Scholar

    Chen X, Chen Q, Zhen Y Y, et al.Circumjacent distribution pattern of the Lungmachian graptolitic black shale (Early Silurian) on the Yichang Uplift and its peripheral region[J].Science China(Earth Sciences), 2018, 61(9):1195-1203.

    Google Scholar

    [8] 腾格尔, 申宝剑, 俞凌杰, 等.四川盆地五峰组-龙马溪组页岩气形成与聚集机理[J].石油勘探与开发, 2017, 44(1):69-78.

    Google Scholar

    Borjigin T, Shen B J, Yu L J, et al.Mechanisms of shale gas generation and accumulation in the Ordovician Wufeng-Longmaxi Formation, Sichuan Basin, SW China[J].Petroleum Exploration and Development, 2017, 44(1):69-78.

    Google Scholar

    [9] Luo Q Y, Hao J Y, Skovsted C B, et al.The organic petrology of graptolites and maturity assessment of the Wufeng-Longmaxi Formations from Chongqing, China:Insights from reflectance cross-plot analysis[J].International Journal of Coal Geology, 2017, 183:161-173. doi: 10.1016/j.coal.2017.09.006

    CrossRef Google Scholar

    [10] Luo Q Y, Hao J Y, Skovsted C B, et al.Optical characteristics of graptolite-bearing sediments and its implication for thermal maturity assessment[J].International Journal of Coal Geology, 2018, 195:386-401. doi: 10.1016/j.coal.2018.06.019

    CrossRef Google Scholar

    [11] Luo Q Y, Zhong N N, Dai N, et al.Graptolite-derived organic matter in the Wufeng-Longmaxi Formations (Upper Ordovician-Lower Silurian) of Southeastern Chongqing, China:Implications for gas shale evaluation[J].International Journal of Coal Geology, 2016, 153:87-98. doi: 10.1016/j.coal.2015.11.014

    CrossRef Google Scholar

    [12] 王勤, 钱门辉, 蒋启贵, 等.中国南方海相烃源岩中笔石生烃能力研究[J].岩矿测试, 2017, 36(3):258-264.

    Google Scholar

    Wang Q, Qian M H, Jiang Q G, et al.A study on hydrocarbon generation capacity of graptoliye in marine hydrocarbon source rocks in Southern China[J].Rock and Mineral Analysis, 2017, 36(3):258-264.

    Google Scholar

    [13] 邱振, 邹才能, 李熙喆, 等.论笔石对页岩气源储的贡献——以华南地区五峰组-龙马溪组笔石页岩为例[J].天然气地球科学, 2018, 29(5):606-615.

    Google Scholar

    Qiu Z, Zou C N, Li X Z, et al.Discussion on the contribution of graptolite to organic enrichment and reservoir of gas shale:A case study of the Wufeng-Longmaxi Formations in South China[J].Natural Gas Geoscience, 2018, 29(5):606-615.

    Google Scholar

    [14] 邹才能, 龚剑明, 王红岩, 等.笔石生物演化与地层年代标定在页岩气勘探开发中的重大意义[J].中国石油勘探, 2019, 24(1):1-6. doi: 10.3969/j.issn.1672-7703.2019.01.001

    CrossRef Google Scholar

    Zou C N, Gong J M, Wang H Y, et al.Importance of graptolite evolution and biostratigraphic calibration on shale gas exploration[J].China Petroleum Exploration, 2019, 24(1):1-6. doi: 10.3969/j.issn.1672-7703.2019.01.001

    CrossRef Google Scholar

    [15] 张元动, 骆天天, 茅永强.利用背散射电子(BSE)研究奥陶纪部分笔石的始端发育和分枝方式[J].古生物学报, 2005, 44(1):125-137. doi: 10.3969/j.issn.0001-6616.2005.01.014

    CrossRef Google Scholar

    Zhang Y D, Luo T T, Mao Y Q, et al.Interpretation of the proximal development and branching divisions of some early and middle Ordovician graptolites based on BSE images[J].Acta Palaeontologica Sinica, 2005, 44(1):125-137. doi: 10.3969/j.issn.0001-6616.2005.01.014

    CrossRef Google Scholar

    [16] 陈旭, 肖承协, 陈洪冶.华南五峰期笔石动物群的分异及缺氧环境[J].古生物学报, 1987, 26(3):326-338.

    Google Scholar

    Chen X, Xiao C X, Chen H Y.Wufengian (Ashgillian) graptolite faunal differentiation and anoxic environment in South China[J].Acta Palaeontologica Sinica, 1987, 26(3):326-338.

    Google Scholar

    [17] Topper T P, Strotz L C, Holmer L E, et al.Survival on a soft seafloor:Life strategies of brachiopods from the Cambrian Burgess Shale[J].Earth Science Reviews, 2015, 151:266-287. doi: 10.1016/j.earscirev.2015.10.015

    CrossRef Google Scholar

    [18] Van R P, Briggs D E G, Gaines R R.The Fezouata fossils of Morocco:An extraordinary record of marine life in the Early Ordovician[J].Journal of the Geological Society, 2015, 172(5):541-549. doi: 10.1144/jgs2015-017

    CrossRef Google Scholar

    [19] Gabbott S E, Browning C, Theron J N, et al.The Late Ordovician Soom Shale Lagerstätte:An extraordinary post-glacial fossil and sedimentary record[J].Journal of the Geological Society, 2017, 174(1):1-9. doi: 10.1144/jgs2016-076

    CrossRef Google Scholar

    [20] Allison P A, Briggs D E G.Exceptional fossil record:Distribution of soft-tissue preservation through the Phanerozoic[J].Geology, 1993, 21(6):527-530. doi: 10.1130/0091-7613(1993)021<0527:EFRDOS>2.3.CO;2

    CrossRef Google Scholar

    [21] Briggs D E G.The role of decay and mineralization in the preservation of soft-bodied fossils[J].Annual Review of Earth and Planetary Sciences, 2003, 31(1):275-301. doi: 10.1146/annurev.earth.31.100901.144746

    CrossRef Google Scholar

    [22] Gaubes R R.Burgess Shale-type preservation and its distribution in space and time[J].The Paleontological Society Papers, 2014, 20:123-146. doi: 10.1017/S1089332600002837

    CrossRef Google Scholar

    [23] Anderson R P, Tosca N J, Gaines R R, et al.A mineralogical signature for Burgess Shale-type fossilization[J].Geology, 2018, 46(4):347-350. doi: 10.1130/G39941.1

    CrossRef Google Scholar

    [24] Kaczmarek Ł, Kozłowska A, Maksimczuk M, et al.The use of X-ray computed microtomography for graptolite detection in rock based on core internal structure visualization[J].Acta Geophysica Polonica, 2017, 67(2):299-306. doi: 10.1515/agp-2017-0010

    CrossRef Google Scholar

    [25] Morga R, Pawlyta M.Microstructure of graptolite periderm in Silurian gas shales of Northern Poland[J].International Journal of Coal Geology, 2018, 189:1-7. doi: 10.1016/j.coal.2018.02.012

    CrossRef Google Scholar

    [26] Mumm A S, Inan S.Microscale organic maturity deter-mination of graptolites using Raman spectroscopy[J].International Journal of Coal Geology, 2016, 162:96-107. doi: 10.1016/j.coal.2016.05.002

    CrossRef Google Scholar

    [27] Tribovillard N, Algeo T J, Lyons T, et al.Trace metals as paleoredox and paleoproductivity proxies:An update[J].Chemical Geology, 2006, 232:12-32. doi: 10.1016/j.chemgeo.2006.02.012

    CrossRef Google Scholar

    [28] Sweetapple M T, Tassios S.Laser-induced breakdown spectroscopy (LIBS) as a tool for in situ mapping and textural interpretation of lithium in pegmatite minerals[J].American Mineralogist, 2015, 100(10):2141-2151. doi: 10.2138/am-2015-5165

    CrossRef Google Scholar

    [29] Ito M, Messenger S.Rare earth element measurements and mapping of minerals in the Allende CAI, 7R19-1, by nano SIMS ion microprobe[J].Meteoritics & Planetary Science, 2016, 51(4):818-832.

    Google Scholar

    [30] Kogiso T, Suzuki K, Suzuki T, et al.Detecting micrometer -scale platinum-group minerals in mantle peridotite with micro beam synchrotron radiation X-ray fluorescence analysis[J].Geochemistry, Geophysics, Geosystems, 2008, 9(3):1-9.

    Google Scholar

    [31] 王华建, 张水昌, 叶云涛, 等.激光剥蚀-电感耦合等离子体质谱实现黄铁矿中多元素原位成像[J].分析化学, 2016, 44(11):1665-1670.

    Google Scholar

    Wang H J, Zhang S C, Ye Y T, et al.In situ imaging of multi-elements on pyrite using laser ablation-inductively coupled plasma-mass spectrometry[J].Chinese Journal of Analytical Chemistry, 2016, 44(11):1665-1670.

    Google Scholar

    [32] 周文喜, 王华建, 付勇, 等.基于LA-ICP-MS多元素成像技术的早寒武世磷结核成因研究[J].岩矿测试, 2017, 36(2):97-106.

    Google Scholar

    Zhou W X, Wang H J, Fu Y, et al.Study on the formation mechanism of phosphate nodules in the Early Cambrian period using LA-ICP-MS multi-element imaging technology[J].Rock and Mineral Analysis, 2017, 36(2):97-106.

    Google Scholar

    [33] 戎嘉余, 魏鑫, 詹仁斌, 等.奥陶纪末期深水介壳动物群在湘西北的发现及其古生态意义[J].中国科学(地球科学), 2018, 48(6):753-766.

    Google Scholar

    Rong J Y, Wei X, Zhan R B, et al.A deep water shelly fauna from the Uppermost Ordovician in Northwestern Hunan, South China and its paleoecological implications[J].Science China (Earth Sciences), 2018, 61(6):730-744.

    Google Scholar

    [34] Zou C N, Qiu Z, Poulton S W, et al.Ocean euxinia and climate change 'double whammy' drove the Late Ordovician mass extinction[J].Geology, 2018, 46(6):535-538. doi: 10.1130/G40121.1

    CrossRef Google Scholar

    [35] Feng Z Q, Dong D Z, Tian J Q, et al.Geochemical characteristics of Longmaxi Formation shale gas in the Weiyuan area, Sichuan Basin, China[J].Journal of Petroleum Science and Engineering, 2018, 167:538-548. doi: 10.1016/j.petrol.2018.04.030

    CrossRef Google Scholar

    [36] Zou C N, Yang Z, Dai J X, et al.The characteristics and significance of conventional and unconventional Sinian-Silurian gas systems in the Sichuan Basin, Central China[J].Marine and Petroleum Geology, 2015, 64:386-402. doi: 10.1016/j.marpetgeo.2015.03.005

    CrossRef Google Scholar

    [37] 陈旭.论笔石的深度分带[J].古生物学报, 1990, 29(5):507-526.

    Google Scholar

    Chen X.Graptolite depth zonation[J].Acta Palaeontologica Sinica, 1990, 29(5):507-526.

    Google Scholar

    [38] May T W, Wiedmeyer R H.A table of polyatomic interferences in ICP-MS[J].Atomic Spectroscopy, 1998, 19(5):150-155.

    Google Scholar

    [39] Alves L C, Wiederin D R, Houk R S.Reduction of polyatomic ion interferences in inductively coupled plasma mass spectrometry by cryogenic desolvation[J].Analytical Chemistry, 1992, 64(10):1164-1169. doi: 10.1021/ac00034a016

    CrossRef Google Scholar

    [40] Pick D, Leiterer M, Einax J W.Reduction of polyatomic interferences in biological material using dynamic reaction cell ICP-MS[J].Microchemical Journal, 2010, 95(2):315-319. doi: 10.1016/j.microc.2010.01.008

    CrossRef Google Scholar

    [41] Novotnik B, Zuliani T, Martinčič A, et al.Effective reduction of polyatomic interferences produced by high chloride and carbon concentrations in determination of Cr(Ⅵ) by FPLC-ICP-MS[J].Journal of Analytical Atomic Spectrometry, 2012, 27(3):488-495. doi: 10.1039/C2JA10270F

    CrossRef Google Scholar

    [42] Van Beek P, Reyss J L, Bonte P, et al.Sr/Ba in barite:A proxy of barite preservation in marine sediments[J].Marine Geology, 2003, 199(3-4):205-220. doi: 10.1016/S0025-3227(03)00220-2

    CrossRef Google Scholar

    [43] 吴石头, 许春雪, Klaus S, 等.193nm ArF准分子激光系统对LA-ICP-MS分析中不同基体的剥蚀行为和剥蚀速率探究[J].岩矿测试, 2017, 36(5):451-459.

    Google Scholar

    Wu S T, Xu C X, Klaus S, et al.Study on ablation behaviors and ablation rates of a 193nm ArF Excimer laser system for selected substrates in LA-ICP-MS analysis[J].Rock and Mineral Analysis, 2017, 36(5):451-459.

    Google Scholar

    [44] Poulton S W, Canfield D E.Development of a sequential extraction procedure for iron:Implications for iron partitioning in continentally derived particulates[J].Chemical Geology, 2005, 214(3-4):209-221. doi: 10.1016/j.chemgeo.2004.09.003

    CrossRef Google Scholar

    [45] Wang S F, Zhao W Z, Zou C N, et al.Organic carbon and stable C-O isotopic study of the Lower Silurian Longmaxi Formation black shales in Sichuan Basin, SW China:Paleoenvironmental and shale gas implications[J].Energy Exploration and Exploitation, 2015, 33:439-458. doi: 10.1260/0144-5987.33.3.439

    CrossRef Google Scholar

    [46] Batista A H, Melo V F, Gilkes R.Scanning and transmission analytical electron microscopy (STEM-EDX) identifies minor minerals and the location of minor elements in the clay fraction of soils[J].Applied Clay Science, 2017, 135:447-456. doi: 10.1016/j.clay.2016.10.032

    CrossRef Google Scholar

    [47] Chen L, Lu Y C, Jiang S, et al.Heterogeneity of the Lower Silurian Longmaxi marine shale in the Southeast Sichuan Basin of China[J].Marine and Petroleum Geology, 2015, 65:232-246. doi: 10.1016/j.marpetgeo.2015.04.003

    CrossRef Google Scholar

    [48] 王爱华.不同形态锶钡比的沉积环境判别效果比较[J].沉积学报, 1996, 14(4):168-173.

    Google Scholar

    Wang A H.Discriminant effect of sedimentary environment by the Sr/Ba ratio of different existing forms[J].Acta Sedimentologica Sinica, 1996, 14(4):168-173.

    Google Scholar

    [49] Liang C, Jiang Z X, Cao Y C, et al.Deep-water depositional mechanisms and significance for unconventional hydrocarbon exploration:A case study from the Lower Silurian Longmaxi Shale in the Southeastern Sichuan Basin[J].AAPG Bulletin, 2016, 100(5):773-794. doi: 10.1306/02031615002

    CrossRef Google Scholar

    [50] Liang C, Jiang Z X, Cao Y C, et al.Sedimentary characteristics and paleoenvironment of shale in the Wufeng-Longmaxi Formation, North Guizhou Province, and its shale gas potential[J].Journal of Earth Science, 2017, 28(6):1020-1031. doi: 10.1007/s12583-016-0932-x

    CrossRef Google Scholar

    [51] Zou C N, Qiu Z, Wei H Y, et al.Euxinia caused the Late Ordovician extinction:Evidence from pyrite morphology and pyritic sulfur isotopic composition in the Yangtze area, South China[J].Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 76:159-175.

    Google Scholar

    [52] Johnson C M, Beard B L, Roden E E.The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth[J].Annual Review of Earth and Planetary Sciences, 2008, 36:457-493. doi: 10.1146/annurev.earth.36.031207.124139

    CrossRef Google Scholar

    [53] Ye Y T, Wang H J, Zhai L N, et al.Contrasting Mo-U enrichments of the basal Datangpo Formation in South China:Implications for the Cryogenian interglacial ocean redox[J].Precambrian Research, 2018, 315:66-74. doi: 10.1016/j.precamres.2018.07.013

    CrossRef Google Scholar

    [54] Chen C, Mu C L, Zhou K K, et al.The geochemical characteristics and factors controlling the organic matter accumulation of the Late Ordovician-Early Silurian black shale in the Upper Yangtze Basin, South China[J].Marine and Petroleum Geology, 2016, 76:159-175. doi: 10.1016/j.marpetgeo.2016.04.022

    CrossRef Google Scholar

    [55] Ma Y Q, Fan M J, Lu Y C, et al.Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in Southwestern China:Implications for depositional controls on organic matter accumulation[J].Marine and Petroleum Geology, 2016, 75:291-309. doi: 10.1016/j.marpetgeo.2016.04.024

    CrossRef Google Scholar

    [56] Zhao J H, Jin Z J, Jin Z K, et al.Applying sedimentary geochemical proxies for paleoenvironment interpretation of organic-rich shale deposition in the Sichuan Basin, China[J].International Journal of Coal Geology, 2016, 163:52-71. doi: 10.1016/j.coal.2016.06.015

    CrossRef Google Scholar

    [57] 张茜, 余谦, 王剑, 等.应用ICP-MS研究川西南龙马溪组泥页岩稀土元素特征及沉积环境[J].岩矿测试, 2018, 37(2):217-224.

    Google Scholar

    Zhang Q, Yu Q, Wang J, et al.Application of ICP-MS to study the rare earth element characteristics and sedimentary environment of black shale in the Longmaxi Formation in the Southwestern Sichuan Basin[J].Rock and Mineral Analysis, 2018, 37(2):217-224.

    Google Scholar

    [58] Zhao J H, Jin Z K, Jin Z J, et al.Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, South China:Implications for pore evolution[J].Journal of Natural Gas Science and Engineering, 2017, 38:21-38. doi: 10.1016/j.jngse.2016.11.037

    CrossRef Google Scholar

    [59] Zhang S C, Wang X M, Wang H J, et al.Sufficient oxygen for animal respiration 1, 400 million years ago[J].Proceedings of the National Academy of Sciences, 2016, 113(7):1731-1736. doi: 10.1073/pnas.1523449113

    CrossRef Google Scholar

    [60] Wang X M, Zhang S C, Wang H J, et al.Oxygen, climate and the chemical evolution of a 1400 million year old tropical marine setting[J].American Journal of Science, 2017, 317(8):861-900. doi: 10.2475/08.2017.01

    CrossRef Google Scholar

    [61] France R L.Carbon-13 enrichment in benthic compared to planktonic algae:Foodweb implications[J].Marine Ecology Progress Series, 1995, 124:307-312. doi: 10.3354/meps124307

    CrossRef Google Scholar

    [62] Xiao S H, Bykova N, Kovalick A, et al.Stable carbon isotopes of sedimentary kerogens and carbonaceous macrofossils from the Ediacaran Miaohe Member in South China:Implications for stratigraphic correlation and sources of sedimentary organic carbon[J].Precambrian Research, 2017, 302:171-179. doi: 10.1016/j.precamres.2017.10.006

    CrossRef Google Scholar

    [63] Gehling J G.Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks[J].Palaios, 1999, 14(1):40-57. doi: 10.2307/3515360

    CrossRef Google Scholar

    [64] Butterfield N J.Exceptional fossil preservation and the Cambrian explosion[J].Integrative and Comparative Biology, 2003, 43(1):166-177. doi: 10.1093/icb/43.1.166

    CrossRef Google Scholar

    [65] Canfield D E.Sulfate reduction and oxic respiration in marine sediments:Implications for organic carbon preservation in euxinic environments[J].Deep Sea Research Part A:Oceanographic Research Papers, 1989, 36(1):121-138. doi: 10.1016/0198-0149(89)90022-8

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(1)

Article Metrics

Article views(2547) PDF downloads(107) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint