Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 6
Article Contents

Sheng-feng MA, Wen-bo ZHAO, Yun ZHU, Hong-bin SUN, Lei WANG, Hong-li WEN. Determination of Symbiotic and Associated Elements in Tin Ore by ICP-MS Combined with Pressurized Acid Digestion and Detinning Process[J]. Rock and Mineral Analysis, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047
Citation: Sheng-feng MA, Wen-bo ZHAO, Yun ZHU, Hong-bin SUN, Lei WANG, Hong-li WEN. Determination of Symbiotic and Associated Elements in Tin Ore by ICP-MS Combined with Pressurized Acid Digestion and Detinning Process[J]. Rock and Mineral Analysis, 2018, 37(6): 650-656. doi: 10.15898/j.cnki.11-2131/td.201804190047

Determination of Symbiotic and Associated Elements in Tin Ore by ICP-MS Combined with Pressurized Acid Digestion and Detinning Process

  • BACKGROUNDTin ore is a hard-to-decompose mineral. The main form is cassiterite (SnO2), and there are many symbiotic and associated elements. The commonly used acid-digestion method can barely dissolve SnO2, making it difficult for accurate measurement of symbiotic and associated elements in tin ore. OBJECTIVESTo decompose the tin ore completely, and accurately determine the symbiotic and associated trace elements in ore. METHODSHydrogen iodide can be produced in a non-aqueous state during the melting of ammonium iodide at a lower temperature, and the acidity of hydrogen iodide and the reductive decomposition of SnO2 by ammonia, and Sn separation by the sublimation of SnI4 which is the basis of the study. Under the catalysis of a high purity platinum, ammonium iodide was used to decompose cassiterite for 30 minutes in a Maffer furnace at 450℃. Tin was removed in the form of SnI4 with a removal rate of 98%. The residue was dissolved by 2 mL HF and 1 mL HNO3 using pressurized acid digestion. Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) was used to accurately determine 24 elements in tin ore. RESULTSThe element detection limits are from 0.001 to 2.9 μg/g, and more than 90% of the elements have a relative standard deviation (RSD) of less than 5%. The relative error is less than 10%. CONCLUSIONSThe method solves the problem of tin ore being difficult to decompose, can measure the coexisting metal elements, and is also suitable for determining trace and ultra-trace elements in tin ore with Sn contents between 1.27% and 62.49% and trace elements in tin concentrate.
  • 加载中
  • [1] 吕中海, 胡卫波, 张俊, 等.锡矿石选矿工艺研究现状与进展[J].现代矿业, 2009(10):19-22. doi: 10.3969/j.issn.1674-6082.2009.10.005

    CrossRef Google Scholar

    Lü Z H, Hu W B, Zhang J, et al.Study status and progress of tin ore dressing process[J].Modern Mining, 2009(10):19-22. doi: 10.3969/j.issn.1674-6082.2009.10.005

    CrossRef Google Scholar

    [2] 杨小莉, 杨小丽, 李小丹, 等.敞开酸溶-电感耦合等离子体质谱法同时测定钨矿石和锡矿石中14种微量元素[J].岩矿测试, 2014, 33(3):321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006

    CrossRef Google Scholar

    Yang X L, Yang X L, Li X D, et al.Simultaneous determination of 14 trace elements in and tin ore with open acid digestion by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2014, 33(3):321-326. doi: 10.3969/j.issn.0254-5357.2014.03.006

    CrossRef Google Scholar

    [3] 杨惠玲, 夏辉, 杜天军, 等.电感耦合等离子体发射光谱法同时测定锡矿石中锡钨钼铜铅锌[J].岩矿测试, 2013, 32(6):887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007

    CrossRef Google Scholar

    Yang H L, Xia H, Du T J, et al.Simultaneous determination of Sn, W, Mo, Cu, Pb and Zn in tin ores by inductively coupled plasma-atomic emission spectrometry[J].Rock and Mineral Analysis, 2013, 32(6):887-892. doi: 10.3969/j.issn.0254-5357.2013.06.007

    CrossRef Google Scholar

    [4] 袁永海, 尹昌慧, 元志红, 等.氢化物发生-原子荧光光谱法同时测定锡矿石中砷和锑[J].冶金分析, 2016, 36(3):39-43.

    Google Scholar

    Yuan Y H, Yin C H, Yuan Z H, et al.Determination of arsenic and antimony in tin ore by hydride generation atomic fluorescence spectrometry[J].Metallurgical Analysis, 2016, 36(3):39-43.

    Google Scholar

    [5] 陈小雁.多金属共生锡矿石中铅的EDTA滴定法测定[J].湿法冶金, 2016, 35(3):260-263.

    Google Scholar

    Chen X Y.Determination of lead in tin ore by EDTA titrimetric method[J].Hydrometallurgy of China, 2016, 35(3):260-263.

    Google Scholar

    [6] 童晓民, 王楠.熔片X射线荧光光谱法测定锡矿石中八种重金属元素[J].分析试验室, 2016, 35(1):97-101.

    Google Scholar

    Tong X M, Wang N.X-ray fluorescence analysis of eight heavy metallic elements in tin ore using fused glass disc method[J].Chinese Journal of Analysis Laboratory, 2016, 35(1):97-101.

    Google Scholar

    [7] Bergerl D, Brügmann G, Pernicka E.On smelting cassi-terite in geological and archaeological samples:Preparation and implications for provenance studies on metal artefacts with tin isotopes[J].Journal of Archaeological Science, 2017.DOI10.1007/s12520-017-0544-z.

    Google Scholar

    [8] 松本健.利用碘化铵熔融分解SnO2、Sb2O3和Bi2O3以及在分析中的应用[J].地球与环境, 1983(5):58-59.

    Google Scholar

    Song B J.Decomposition of tin(Ⅳ) oxide, antimony(Ⅲ) oxide and bismuth(Ⅲ) oxide by fusion with ammonium iodide and its application for analysis of the environmental samples[J].Earth and Environment, 1983(5):58-59.

    Google Scholar

    [9] 何红蓼, 胡明月, 巩爱华, 等.碘化物升华分离-电感耦合等离子体光谱法测定土壤和沉积物中砷、锑、铋、镉、锡[J].光谱学与光谱分析, 2008, 28(3):663-666. doi: 10.3964/j.issn.1000-0593.2008.03.044

    CrossRef Google Scholar

    He H L, Hu M Y, Gong A H, et al.Determination of As, Sb, Bi, Cd and Sn in soils and sediments by inductively coupled plasma atomic emission spectrometry after sublimation separation as iodides[J].Spectroscopy and Spectral Analysis, 2008, 28(3):663-666. doi: 10.3964/j.issn.1000-0593.2008.03.044

    CrossRef Google Scholar

    [10] 段文峰, 龚露.碘化铵挥发与分离制样技术在原子荧光光谱法测定地质样品中痕量锗、锡、锑的运用[J].理化检验(化学分册), 2014, 50(8):1004-1007.

    Google Scholar

    Duan W F, Gong L.Application of volatilization of iodides of Ge, Sn and Sb by NH4I as techniques of sample pretreatment and separation to AFS determination of the 3 elements in geological samples[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2014, 50(8):1004-1007.

    Google Scholar

    [11] 陈国娟.碘化铵挥发-原子荧光光谱法测定铅锌矿中的锡[J].化学与黏合, 2016, 38(6):461-463.

    Google Scholar

    Chen G J.Determination of tin in lead-zinc mine by the volatilization of ammonium iodide-atomic fluorescence spectrometry[J].Chemistry and Adhesion, 2016, 38(6):461-463.

    Google Scholar

    [12] 岩石矿物分析编委会.岩石矿物分析(第四版 第三分册)[M].北京:地质出版社, 2011:118-207.

    Google Scholar

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:Volume Ⅲ)[M].Beijing:Geological Publishing House, 2011:118-207.

    Google Scholar

    [13] 何红蓼, 李冰, 韩丽荣, 等.封闭压力酸溶-ICP-MS法分析地质样品中47个元素的评价[J].分析试验室, 2002, 21(5):8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004

    CrossRef Google Scholar

    He H L, Li B, Han L R, et al.Evaluation of determining 47 elements in geological samples by pressurized acid digestion-ICP-MS[J].Chinese Journal of Analysis Laboratory, 2002, 21(5):8-12. doi: 10.3969/j.issn.1000-0720.2002.05.004

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(5)

Article Metrics

Article views(2313) PDF downloads(65) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint