Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 6
Article Contents

Nan ZHANG, Tie-min XU, Liang-ying WU, Shuang WEI, Peng-da FANG, Jia-song WANG. Determination of Rare Earth Elements in Sepiolite by ICP-MS Using Microwave Digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644-649. doi: 10.15898/j.cnki.11-2131/td.201803160023
Citation: Nan ZHANG, Tie-min XU, Liang-ying WU, Shuang WEI, Peng-da FANG, Jia-song WANG. Determination of Rare Earth Elements in Sepiolite by ICP-MS Using Microwave Digestion[J]. Rock and Mineral Analysis, 2018, 37(6): 644-649. doi: 10.15898/j.cnki.11-2131/td.201803160023

Determination of Rare Earth Elements in Sepiolite by ICP-MS Using Microwave Digestion

  • BACKGROUNDSepiolite is a fibrous hydrous magnesium rich silicate clay mineral with the content of rare earth elements between 1×10-7 and 1×10-5. There is no national standard method for the determination of rare earth elements in sepiolite. Determination of rare earth elements in rocks commonly uses ICP-MS. Sample pretreatments generally use closed digestion and alkaline fusion, but these two treatments are time consuming and inefficient. OBJECTIVESTo find an efficient dissolution method for the determination of 15 rare earth elements in sepiolite. METHODSBy comparing three sample pretreatment methods of nitrate hydrofluoric acid hydrogen peroxide, nitric acid-hydrofluoric acid and nitric-acid hydrogen peroxide, the nitric acid-hydrofluoric acid solution system was selected. Microwave digestion was carried out and the hydrofluoric acid was driven off to avoid the formation of insoluble fluorides from the hydrofluoric acid. The content of 15 rare earth elements was determined by ICP-MS. RESULTSDue to the high content of magnesium in sepiolite, two internal standards of 103Rh and 185Re are selected to compensate for the drift of analytical signals and to correct matrix effects. The recoveries of the method range from 91.2% to 110.9%. The detection limits are 0.002-0.011 μg/L, and the precisions are 0.81%-2.79%. CONCLUSIONSThe result of this method is in good agreement with that of the closed acid-digestion ICP-MS method, and with a small amount of acid (7 mL), high digestion efficiency (1 h), and a lower detection limit.
  • 加载中
  • [1] 王长远, 王功勋, 陶涛, 等.海泡石功能化绿色建材研究进展与应用现状[J].硅酸盐通报, 2017, 36(10):3285-3291.

    Google Scholar

    Wang C Y, Wang G X, Tao T, et al.Research progress and application status of sepiolite functional green building materials[J].Bulletin of the Chinese Ceramic Society, 2017, 36(10):3285-3291.

    Google Scholar

    [2] Rytwo G, Tropp D, Serban C.Adsorption of diquat para-quat and methyl green on sepiolite:Experimental results and model calculations[J].Applied Clay Science, 2002, 20(6):273-282. doi: 10.1016/S0169-1317(01)00068-0

    CrossRef Google Scholar

    [3] Ozcan A, Ozcan A S.Adsorption of acid red 57 from aqueous solutions onto surfactant-modified sepiolite[J].Journal of Hazardous Materials, 2005, 125(1-3):252-259. doi: 10.1016/j.jhazmat.2005.05.039

    CrossRef Google Scholar

    [4] 王佩佩, 李霄, 宋伟娇.微波消解-电感耦合等离子体质谱法测定地质样品中稀土元素[J].分析测试学报, 2016, 35(2):235-240. doi: 10.3969/j.issn.1004-4957.2016.02.017

    CrossRef Google Scholar

    Wang P P, Li X, Song W J.Determination of rare earth elements in geological samples by ICP-MS using microwave digestion[J].Journal of Instrumental Analysis, 2016, 35(2):235-240. doi: 10.3969/j.issn.1004-4957.2016.02.017

    CrossRef Google Scholar

    [5] 陈贺海, 荣德福, 付冉冉, 等.微波消解-电感耦合等离子体质谱法测定铁矿石中15个稀土元素[J].岩矿测试, 2013, 32(5):702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005

    CrossRef Google Scholar

    Chen H H, Song D F, Fu R R, et al.Determination of fifteen rare-earth elements in iron ores using inductively coupled plasma mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2013, 32(5):702-708. doi: 10.3969/j.issn.0254-5357.2013.05.005

    CrossRef Google Scholar

    [6] 陈永欣, 黎香荣, 韦新红, 等.微波消解-电感耦合等离子体质谱法测定土壤和沉积物中痕量稀土元素[J].岩矿测试, 2011, 30(5):560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008

    CrossRef Google Scholar

    Chen Y X, Li X R, Wei X H, et al.Determination of trace rare earth elements in soils and sediments by inductively coupled plasma-mass spectrometry with microwave digestion[J].Rock and Mineral Analysis, 2011, 30(5):560-565. doi: 10.3969/j.issn.0254-5357.2011.05.008

    CrossRef Google Scholar

    [7] 高海荣.微波消解样品-电感耦合等离子体质谱法测定土壤中稀土元素[J].理化检验(化学分册), 2013, 49(10):1185-1187.

    Google Scholar

    Gao H R.ICP-MS determination of RE elements in soil with microwave assisted sample digestion[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2013, 49(10):1185-1187.

    Google Scholar

    [8] 李志伟, 邰自安, 任文岩, 等.微波消解电感耦合等离子体质谱法测定黑色页岩中稀有稀土元素[J].岩矿测试, 2010, 29(3):259-262. doi: 10.3969/j.issn.0254-5357.2010.03.013

    CrossRef Google Scholar

    Li Z W, Tai Z A, Ren W Y, et al.Determination of rare and rare earth elements in black shales by inductively coupled plasma-mass spectrometry[J].Rock and Mineral Analysis, 2010, 29(3):259-262. doi: 10.3969/j.issn.0254-5357.2010.03.013

    CrossRef Google Scholar

    [9] 赵楠楠, 黄慧萍, 李艳玲, 等.电感耦合等离子体质谱法测定金红石单矿物中痕量稀土元素[J].理化检验(化学分册), 2012, 48(7):781-784.

    Google Scholar

    Zhao N N, Huang H P, Li Y L, et al.ICP-MS determination of trace amounts of rare earth elements in monomineralic rocks of rutile[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2012, 48(7):781-784.

    Google Scholar

    [10] 刘勤志, 吴堑虹.ICP-MS测定铝土矿中的稀土元素[J].煤炭技术, 2010, 29(5):148-149.

    Google Scholar

    Liu Q Z, Wu Q H.Determination of rare earth elements in bauxite by ICP-MS[J].Coal Technology, 2010, 29(5):148-149.

    Google Scholar

    [11] 戴雪峰, 蒋宗明, 杨利华.电感耦合等离子体质谱(ICP-MS)法测定铜铅锌矿中稀土元素[J].中国无机分析化学, 2016, 6(1):26-29. doi: 10.3969/j.issn.2095-1035.2016.01.007

    CrossRef Google Scholar

    Dai X F, Jiang Z M, Yang L H.Determination rare earth elements in copper, lead and zinc ores by inductively coupled plasma mass spectrometry[J].Chinese Journal of Inorganic Analytical Chemistry, 2016, 6(1):26-29. doi: 10.3969/j.issn.2095-1035.2016.01.007

    CrossRef Google Scholar

    [12] Smirnova E V, Fedorova I N, Sandimirova G P, et al.Determination of rare earth elements in black shales by inductively coupled plasma mass spectrometry[J].Spectrochimica Acta Part B:Atomic Spectroscopy, 2003, 58(2):329-340. doi: 10.1016/S0584-8547(02)00152-0

    CrossRef Google Scholar

    [13] 张世涛, 徐艳秋, 刘晶晶, 等.ICP-MS测定锶矿石中稀土元素[J].当代化工, 2016, 45(2):426-428. doi: 10.3969/j.issn.1671-0460.2016.02.071

    CrossRef Google Scholar

    Zhang S T, Xu Y Q, Liu J J, et al.Determination of rare earth elements in strontium by ICP-MS[J].Contemporary Chemical Industry, 2016, 45(2):426-428. doi: 10.3969/j.issn.1671-0460.2016.02.071

    CrossRef Google Scholar

    [14] 杨小丽, 李小丹, 邹棣华.溶样方法对电感耦合等离子体质谱法测定铝土矿中稀土元素的影响[J].冶金分析, 2016, 36(7):56-62.

    Google Scholar

    Yang X L, Li X D, Zou D H.Influence of sample dissolution method on determination of rare earth elements in bauxite by inductively coupled plasma mass spectrometry[J].Metallurgical Analysis, 2016, 36(7):56-62.

    Google Scholar

    [15] 岩石矿物分析编委会.岩石矿物分析(第四版 第二分册)[M].北京:地质出版社, 2011:105-115.

    Google Scholar

    The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:Volume Ⅱ)[M].Beijing:Geological Publishing House, 2011:105-115.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Tables(6)

Article Metrics

Article views(1755) PDF downloads(72) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint