Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2019 Vol. 38, No. 2
Article Contents

Guang-sheng ZENG, Le-ming OU. Study on Mineralogical Characteristics of Peru Copper-Sulphur Ore Dressing Process by X-ray Diffraction and Scanning Electron Microscope[J]. Rock and Mineral Analysis, 2019, 38(2): 160-168. doi: 10.15898/j.cnki.11-2131/td.201804130042
Citation: Guang-sheng ZENG, Le-ming OU. Study on Mineralogical Characteristics of Peru Copper-Sulphur Ore Dressing Process by X-ray Diffraction and Scanning Electron Microscope[J]. Rock and Mineral Analysis, 2019, 38(2): 160-168. doi: 10.15898/j.cnki.11-2131/td.201804130042

Study on Mineralogical Characteristics of Peru Copper-Sulphur Ore Dressing Process by X-ray Diffraction and Scanning Electron Microscope

More Information
  • BACKGROUNDThe main recovered minerals of copper sulfur ores in Peru were copper minerals and sulfur minerals. Due to the complexity of the embedded copper minerals, the superfine granularity of copper minerals and their close relationship with various gangue or metal minerals, the traditional process mineralogy research methods, such as chemical analysis and optical microscope detection, were difficult to quantify their process mineralogical parameters accurately. OBJECTIVESTo systematically investigate the process mineralogy of copper-sulfur ore in Peru. METHODSBy means of chemical analysis, X-ray Diffraction, Scanning Electron Microscope, Polarizing Microscope and Mineral Liberation Analysis, the systematic process mineralogy of copper-sulfur ores including chemical composition, mineral composition, occurrences of main minerals, particle size distribution and monomer dissociation characteristics were investigated, and the main mineralogical factors affecting the mineral dressing index were analyzed. RESULTSThe main elements in the ore were Cu (0.65%) and S (9.53%). The content of pyrite (16.57%) in the ore was relatively high, and its morphology was regular. The relationship between pyrite and other minerals was relatively simple, and the particle size was generally coarse. Pyrite particle size larger than 0.30mm accounted for 95.06%. However, the copper minerals were mainly irregular granular, shell shaped, reticulated, fibrous, dust-like, and speckled in gangue minerals or intersected with pyrite, sphalerite, magnetite and other metal minerals. The uneven particle size of copper minerals makes the dissociation of copper minerals more difficult. Moreover, the contents of clay minerals such as mica (12.51%), chlorite (3.74%), talc (3.34%), kaolinite and montmorillonite (3.59%) were abundant in the ore. During grinding, mudding occurred easily, which worsened the separation environment. CONCLUSIONSThe mineral processing flowsheet of coarse grinding-partially preferred floating copper-copper sulfur mixed flotation-mixed concentrate regrinding and separation can be used in copper-sulfur ore of Peru.
  • 加载中
  • [1] 贾木欣.国外工艺矿物学进展及发展趋势[J].矿冶, 2007, 16(2):95-99. doi: 10.3969/j.issn.1005-7854.2007.02.025

    CrossRef Google Scholar

    Jia M X.Process mineralogy progress and its trend abroad[J].Mining & Metallurgy, 2007, 16(2):95-99. doi: 10.3969/j.issn.1005-7854.2007.02.025

    CrossRef Google Scholar

    [2] 肖仪武, 方明山, 付强, 等.工艺矿物学研究的新技术与新理念[J].矿产保护与利用, 2018(3):49-54.

    Google Scholar

    Xiao Y W, Fang M S, Fu Q, et al.New techniques and concepts in process mineralogy[J].Conservation and Utilization of Mineral Resources, 2018(3):49-54.

    Google Scholar

    [3] Lotter N O, Baum W, Reeves S, et al.The business value of best practice process mineralogy[J].Minerals Engineering, 2018, 116:226-238. doi: 10.1016/j.mineng.2017.05.008

    CrossRef Google Scholar

    [4] 王蓓, 单勇, 赵培樑, 等.工艺矿物学对难选矿石评价的意义[J].矿产综合利用, 2015(1):58-60. doi: 10.3969/j.issn.1000-6532.2015.01.013

    CrossRef Google Scholar

    Wang B, Shan Y, Zhao P L, et al.The meaning of process mineralogy on appraising refractory minerals[J].Multipurpose Utilization of Mineral Resources, 2015(1):58-60. doi: 10.3969/j.issn.1000-6532.2015.01.013

    CrossRef Google Scholar

    [5] 刘榕鑫, 朱坤, 谢海云, 等.云南斑岩型多金属金矿的嵌布特征及赋存状态研究[J].岩矿测试, 2018, 37(4):404-410.

    Google Scholar

    Liu R X, Zhu K, Xie H Y, et al.Study on the inlay characteristics and occurrences of Yunnan porphyry polymetallic gold deposits[J].Rock and Mineral Analysis, 2018, 37(4):404-410.

    Google Scholar

    [6] Lotter N O.Modern process mineralogy:An integrated multi-disciplined approach to flowsheeting[J].Minerals Engineering, 2011, 24(12):1229-1237. doi: 10.1016/j.mineng.2011.03.004

    CrossRef Google Scholar

    [7] Lotter N O, Kormos L J, Oliveira J, et al.Modern process mineralogy:Two case studies[J]. Minerals Engineering, 2011, 24(7):638-650. doi: 10.1016/j.mineng.2011.02.017

    CrossRef Google Scholar

    [8] 罗立群, 李金良, 曹佳宏.哈密铜镍矿工艺矿物学特性与影响选矿的因素[J].中国有色金属学报, 2014, 24(7):1846-1855.

    Google Scholar

    Luo L Q, Li J L, Cao J H.Process mineralogy and factors affecting mineral processing for copper-nickel ore in Hami[J].The Chinese Journal of Nonferrous Metals, 2014, 24(7):1846-1855.

    Google Scholar

    [9] 陈秋虎, 解志锋.安徽铜陵某铜矿工艺矿物学研究[J].矿冶, 2017, 26(1):83-86. doi: 10.3969/j.issn.1005-7854.2017.01.020

    CrossRef Google Scholar

    Chen Q H, Xie Z F.Study on process mineralogy of a copper ore from Tongling, Anhui[J].Mining & Metallurgy, 2017, 26(1):83-86. doi: 10.3969/j.issn.1005-7854.2017.01.020

    CrossRef Google Scholar

    [10] 谢海云, 叶群杰, 周平, 等.云南思茅地区铜锌硫化矿工艺矿物学分析[J].岩矿测试, 2014, 33(3):345-352. doi: 10.3969/j.issn.0254-5357.2014.03.011

    CrossRef Google Scholar

    Xie H Y, Ye Q J, Zhou P, et al.Process mineralogy analysis of copper-zinc sulfide ore from the Simao region, Yunnan Province[J].Rock and Mineral Analysis, 2014, 33(3):345-352. doi: 10.3969/j.issn.0254-5357.2014.03.011

    CrossRef Google Scholar

    [11] 高歌, 王艳.MLA自动检测技术在工艺矿物学研究中的应用[J].黄金, 2015(10):66-69. doi: 10.11792/hj201510015

    CrossRef Google Scholar

    Gao G, Wang Y.Application of MLA automatic technology in process mineralogy research[J].Gold, 2015(10):66-69. doi: 10.11792/hj201510015

    CrossRef Google Scholar

    [12] 高倩倩, 刘杨, 杨艳芳, 等.MLA与偏光显微镜在工艺矿物学研究中的应用对比[J].矿业工程, 2018, 16(4):39-40.

    Google Scholar

    Gao Q Q, Liu Y, Yang Y F, et al.The application comparison between MLA and polarizing microscope in process mineralogy study[J].Mining Engineering, 2018, 16(4):39-40.

    Google Scholar

    [13] 唐志东, 李文博, 高鹏, 等.朝阳钒钛磁铁矿工艺矿物学研究[J].东北大学学报(自然科学版), 2017, 38(12):1769-1774. doi: 10.12068/j.issn.1005-3026.2017.12.021

    CrossRef Google Scholar

    Tang Z D, Li W B, Gao P, et al.Mineralogical study of vanadium titanium magnetite ore in Chaoyang[J].Journal of Northeastern University(Natural Science), 2017, 38(12):1769-1774. doi: 10.12068/j.issn.1005-3026.2017.12.021

    CrossRef Google Scholar

    [14] 成岚, 李茂林, 黄光耀.某铅锌尾矿浓密机溢流的工艺矿物学分析[J].中国有色金属学报, 2015(7):1953-1960.

    Google Scholar

    Cheng L, Li M L, Huang G Y.Process mineralogy analysis of certain lead-zinc tailings thickener overflow[J].The Chinese Journal of Nonferrous Metals, 2015(7):1953-1960.

    Google Scholar

    [15] Gottlieb P, Wilkie G, Sutherland D, et al.Using quan-titative electron microscopy for process mineralogy applications[J].Journal of Metals, 2000, 52(4):24-25.

    Google Scholar

    [16] Lewis D B.Scanning electron microscopy and X-ray microanalysis[J].Transactions of the Institute of Materials Finishing, 1997, 70(4):198-202.

    Google Scholar

    [17] 胡海祥, 范作鹏, 牛桂强, 等.焦家金矿选厂旋流器溢流产品工艺矿物学分析[J].岩矿测试, 2014, 33(4):535-544. doi: 10.3969/j.issn.0254-5357.2014.04.014

    CrossRef Google Scholar

    Hu H X, Fan Z P, Niu G Q, et al.The mineralogy characteristics of overflow product from hydrocyclone in the Jiaojia glod mine[J].Rock and Mineral Analysis, 2014, 33(4):535-544. doi: 10.3969/j.issn.0254-5357.2014.04.014

    CrossRef Google Scholar

    [18] 王含, 周征宇, 钟倩, 等.电子微探针-X射线衍射-扫描电镜研究老挝石岩石矿物学特征[J].岩矿测试, 2016, 35(1):56-61.

    Google Scholar

    Wang H, Zhou Z Y, Zhong Q, et al.Study on petrological and mineralogical characteristics of Laos stone by EPMA-XRD-SEM[J].Rock and Mineral Analysis, 2016, 35(1):56-61.

    Google Scholar

    [19] Gu Y.Automated scanning electron microscope based mineral liberation analysis an introduction to JKMRC/FEI mineral liberation analyser[J].Journal of Minerals & Materials Characterization & Engineering, 2003, 2(1):33-41.

    Google Scholar

    [20] Fandrich R, Gu Y, Burrows D, et al.Modern SEM-based mineral liberation analysis[J]. International Journal of Mineral Processing, 2007, 84(1):310-320.

    Google Scholar

    [21] Gu Y, Schouwstra R P, Rule C.The value of automated mineralogy[J].Minerals Engineering, 2014, 58(4):100-103.

    Google Scholar

    [22] 苏秀珠, 黄志华, 衷水平, 等.卡林型金矿石中金的赋存状态分析新方法[J].岩矿测试, 2013, 32(3):474-482. doi: 10.3969/j.issn.0254-5357.2013.03.021

    CrossRef Google Scholar

    Su X Z, Huang Z H, Zhong S P, et al.New analysis method for glod occurrence in carlin-type glod ore[J].Rock and Mineral Analysis, 2013, 32(3):474-482. doi: 10.3969/j.issn.0254-5357.2013.03.021

    CrossRef Google Scholar

    [23] 谢海云, 李圆洪, 叶群杰, 等.滇西铜多金属硫化矿的工艺矿物学特性[J].矿物岩石, 2015, 35(4):17-22.

    Google Scholar

    Xie H Y, Li Y H, Ye Q J, et al.Characteristics of processing mineralogy of polymetallic sulfide in West Yunnan[J].Journal of Mineralogy and Petrology, 2015, 35(4):17-22.

    Google Scholar

    [24] 唐志东, 陈国岩, 曲孔辉, 等.鞍钢东部尾矿工艺矿物学研究[J].金属矿山, 2018(6):109-113.

    Google Scholar

    Tang Z D, Chen G Y, Qu K H, et al.Research on process mineralogy of eastern tailings in Ansteel[J].Metal Mine, 2018(6):109-113.

    Google Scholar

    [25] 周耀文, 文书明, 王伊杰, 等.云南大屯锡粗精矿工艺矿物学研究[J].岩石矿物学杂志, 2017, 36(6):779-784. doi: 10.3969/j.issn.1000-6524.2017.06.002

    CrossRef Google Scholar

    Zhou Y W, Wen S M, Wang Y J, et al.Process mineralogical research on the rough tin concentrate in Datun, Yunnan Province[J].Acta Petrologica et Mineralogica, 2017, 36(6):779-784. doi: 10.3969/j.issn.1000-6524.2017.06.002

    CrossRef Google Scholar

    [26] Nagle J F, Cognet P, Dupuy F G, et al.Structure of gel phase DPPC determined by X-ray diffraction[J].Chemistry and Physics of Lipids, 2019, 218:168-177. doi: 10.1016/j.chemphyslip.2018.12.011

    CrossRef Google Scholar

    [27] Fagundes A C F, Lopes L M, Antoniassi M, et al.Stru-ctural characterization of canine mammary tissue by X-ray diffraction[J].Radiation Physics and Chemistry, 2019, 155:22-25. doi: 10.1016/j.radphyschem.2018.07.018

    CrossRef Google Scholar

    [28] 艾光华, 周源, 魏宗武.提高某难选铜矿石回收率的选矿新工艺研究[J].金属矿山, 2008(11):46-48. doi: 10.3321/j.issn:1001-1250.2008.11.014

    CrossRef Google Scholar

    Ai G H, Zhou Y, Wei Z W.Study on the new beneficiation for improving the recovery of certain refractory copper ore[J].Metal Mine, 2008(11):46-48. doi: 10.3321/j.issn:1001-1250.2008.11.014

    CrossRef Google Scholar

    [29] 周玉才.某难选低品位铜硫矿选矿工艺研究[J].有色矿冶, 2013(2):31-34. doi: 10.3969/j.issn.1007-967X.2013.02.012

    CrossRef Google Scholar

    Zhou Y C.Study on the mineral processing technology of a refractory low grade copper sulfideore[J].Nonferrous Mining and Metallurgy, 2013(2):31-34. doi: 10.3969/j.issn.1007-967X.2013.02.012

    CrossRef Google Scholar

    [30] 卫召, 孙伟, 张庆鹏, 等.细粒硫化铜矿与易泥化钙镁矿物的浮选分离[J].有色金属工程, 2017, 7(4):64-69. doi: 10.3969/j.issn.2095-1744.2017.04.014

    CrossRef Google Scholar

    Wei Z, Sun W, Zhang Q P, et al.Flotation separation of fine copper sulfide and easy-sliming[J].Nonferrous Metals Engineering, 2017, 7(4):64-69. doi: 10.3969/j.issn.2095-1744.2017.04.014

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1601) PDF downloads(37) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint