Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 6
Article Contents

Kai-jun CAO, Zhong-wei WU, Xiao-ming SUN, Yan WANG, Xiao LIN. Mineralogical and Geochemical Characteristics of Al-rich Clays from the Longqi Hydrothermal Field, Southwest Indian Ridge[J]. Rock and Mineral Analysis, 2018, 37(6): 607-617. doi: 10.15898/j.cnki.11-2131/td.201804040036
Citation: Kai-jun CAO, Zhong-wei WU, Xiao-ming SUN, Yan WANG, Xiao LIN. Mineralogical and Geochemical Characteristics of Al-rich Clays from the Longqi Hydrothermal Field, Southwest Indian Ridge[J]. Rock and Mineral Analysis, 2018, 37(6): 607-617. doi: 10.15898/j.cnki.11-2131/td.201804040036

Mineralogical and Geochemical Characteristics of Al-rich Clays from the Longqi Hydrothermal Field, Southwest Indian Ridge

More Information
  • BACKGROUNDThe mineralogy, chemistry and crystal structure of hydrothermal clay minerals from various geologic settings have been studied to reflect the fluid-rock interaction and physico-chemical evolution of fluids in hydrothermal environments. However, clay minerals in the ultraslow-spreading Southwest Indian Ridge have received less attention. OBJECTIVESTo obtain a better understanding of the features of clay minerals and to constrain hydrothermal alteration processes in the SWIR. METHODSA fragment of massive sulfide ore with irregular-shaped breccia was collected from the Longqi hydrothermal field and studied using SEM-EDS, XRD, FT-IR, EPMA and LA-ICP-MS to determine its mineralogical and geochemical characteristics. RESULTSThe breccia sample contains disseminated micro-sized TiO2 and is mainly composed of Al-rich dioctahedral smectite (i.e., beidellite) and amorphous opal. The total content of REE (2.43 to 43.45 μg/g) in such Al-rich, Mg-poor and Fe-poor smectite is commonly low and the REE fractionation patterns exhibit no significant Ce anomaly (1.09-1.16) but yield negative δEu values (0.31-0.53). It has been suggested that continuous ore-forming fluids (typical of low-temperature, acidicity and relatively reduced solutions) might be responsible for extensive leaching and remobilization of all elements except Al and Ti, thus promoting the formation of Al-rich smectite at the periphery of the Longqi hydrothermal system. CONCLUSIONSThe altered clay mineral and its geochemical characteristics have been studied, reflecting the pervasive development of low-temperature hydrothermal alteration at the Longqi hydrothermal field. This study provides a basis for further discussion of the fluid-rock interaction in the ultraslow-spreading SWIR.
  • 加载中
  • [1] Hazen R M, Sverjensky D A, Azzolini D, et al.Clay mineral evolution[J]. American Mineralogist, 2013, 98(11-12):2007-2029. doi: 10.2138/am.2013.4425

    CrossRef Google Scholar

    [2] Cuadros J, Dekov V M, Arroyo X, et al.Smectite Formation in Submarine Hydrothermal Sediments:Samples from the HMS Challenger Expedition (1872-1876)[J]. Clays and Clay Minerals, 2011, 59(2):147-164. doi: 10.1346/CCMN.2011.0590204

    CrossRef Google Scholar

    [3] Severmann S, Mills R A, Palmer M R, et al.The origin of clay minerals in active and relict hydrothermal deposits[J]. Geochimica et Cosmochimica Acta, 2004, 68(1):73-88. doi: 10.1016/S0016-7037(03)00235-7

    CrossRef Google Scholar

    [4] Lackschewitz K S, Botz R, Garbe-Schönberg D, et al.Mineralogy and geochemistry of clay samples from active hydrothermal vents off the north coast of Iceland[J]. Marine Geology, 2006, 225(1):177-190.

    Google Scholar

    [5] Zierenberg R A, Schiffman P, Jonasson I R, et al.Altera-tion of basalt hyaloclastite at the off-axis Sea Cliff hydrothermal field, Gorda Ridge[J]. Chemical Geology, 1995, 126(2):77-99. doi: 10.1016/0009-2541(95)00111-2

    CrossRef Google Scholar

    [6] Haymon R M, Kastner M.The formation of high temperature clay minerals from basalt alteration during hydrothermal discharge on the East Pacific Rise axis at 21°N[J]. Geochimica et Cosmochimica Acta, 1986, 50(9):1933-1939. doi: 10.1016/0016-7037(86)90249-8

    CrossRef Google Scholar

    [7] German C R, Baker E T, Mevel C, et al.Hydrothermal activity along the Southwest Indian Ridge[J]. Nature, 1998, 395:490-493. doi: 10.1038/26730

    CrossRef Google Scholar

    [8] Tao C H, Lin J, Guo S Q, et al.First active hydrothermal vents on an ultraslow-spreading center:Southwest Indian Ridge[J]. Geology, 2012, 40(1):47-50. doi: 10.1130/G32389.1

    CrossRef Google Scholar

    [9] Nakamura K, Kato Y, Tamaki K, et al.Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction[J]. Marine Geology, 2007, 239(3):125-141.

    Google Scholar

    [10] 王琰, 孙晓明, 徐莉, 等.西南印度洋中脊热液区海底玄武岩元素地球化学原位分析[J].光谱学与光谱分析, 2015, 35(3):796-802. doi: 10.3964/j.issn.1000-0593(2015)03-0796-07

    CrossRef Google Scholar

    Wang Y, Sun X M, Xu L, et al.In situ analysis of element geochemistry in submarine basalt in hydrothermal areas from ultraslow spreading Southwest Indian Ridge[J]. Spectroscopy and Spectral Analysis, 2015, 35(3):796-802. doi: 10.3964/j.issn.1000-0593(2015)03-0796-07

    CrossRef Google Scholar

    [11] 叶俊, 石学法, 杨耀民, 等.西南印度洋超慢速扩张脊49.6°E热液区硫化物矿物学特征及其意义[J].矿物学报, 2011, 31(1):17-29.

    Google Scholar

    Ye J, Shi X F, Yang Y M, et al.Mineralogy of sulfides from ultraslow spreading Southwest Indian Ridge 49.6°E hydrothermal field and its metallogenic significance[J]. Acta Mineralogica Sinica, 2011, 31(1):17-29.

    Google Scholar

    [12] Tao C H, Li H M, Huang W, et al.Mineralogical and geochemical features of sulfide chimneys from the 49°39'E hydrothermal field on the Southwest Indian Ridge and their geological inferences[J]. Science Bulletin, 2011, 56(26):2828-2838. doi: 10.1007/s11434-011-4619-4

    CrossRef Google Scholar

    [13] 于淼, 苏新, 陶春辉, 等.西南印度洋中脊49.6°E和50.5°E区玄武岩岩石学及元素地球化学特征[J].现代地质, 2013, 27(3):497-508. doi: 10.3969/j.issn.1000-8527.2013.03.001

    CrossRef Google Scholar

    Yu M, Su X, Tao C H, et al.Petrological and geochemical features of basalts at 49.6°E and 50.5°E hydrothermal fields along the Southwest Indian Ridge[J]. Geoscience, 2013, 27(3):497-508. doi: 10.3969/j.issn.1000-8527.2013.03.001

    CrossRef Google Scholar

    [14] 王振波, 武光海, 韩沉花.西南印度洋脊49.6°E热液区热液产物和玄武岩地球化学特征[J].海洋学研究, 2014, 32(1):64-73.

    Google Scholar

    Wang Z B, Wu G H, Han C H.Geochemical characteristics of hydrothermal deposits and basalts at 49.6°E on the Southwest Indian Ridge[J]. Journal of Marine Sciences, 2014, 32(1):64-73.

    Google Scholar

    [15] Howard K J, Fisk M R.Hydrothermal alumina-rich clays and boehmite on the Gorda Ridge[J]. Geochimica et Cosmochimica Acta, 1988, 52(9):2269-2279. doi: 10.1016/0016-7037(88)90129-9

    CrossRef Google Scholar

    [16] Papoulis D, Tsoliskatagas P, Kalampounias A G, et al.Progressive formation of halloysite from the hydrothermal alteration of biotite and the formation mechanisms of anatase in altered volcanic rocks from Limnos Island, Northeast Aegean Sea, Greece[J]. Clays and Clay Minerals, 2009, 57(5):566-577. doi: 10.1346/CCMN.2009.0570505

    CrossRef Google Scholar

    [17] Monecke T, Giorgetti G, Scholtysek O, et al.Textural and mineralogical changes associated with the incipient hydrothermal alteration of glassy dacite at the submarine PACMANUS hydrothermal system, Eastern Manus Basin[J]. Journal of Volcanology and Geothermal Research, 2007, 160(1):23-41.

    Google Scholar

    [18] Zhou H Y, Luo A, Yang Q H.A hydrothermal Complex Chimney Found in Dragon Flag Field, Southwest Indian Ridge[M]. Goldschmidt Abstract, 2017.

    Google Scholar

    [19] Zviagina B B, McCarty D K, Środonón J, et al.Inter-pretation of infrared spectra of dioctahedral smectites in the region of OH-stretching vibrations[J]. Clays and Clay Minerals, 2004, 52(4):399-410. doi: 10.1346/CCMN.2004.0520401

    CrossRef Google Scholar

    [20] Cao Z M, Cao H, Tao C H, et al.Rare earth element geochemistry of hydrothermal deposits from Southwest Indian Ridge[J]. Acta Oceanologica Sinica, 2012, 31(2):62-69. doi: 10.1007/s13131-012-0192-1

    CrossRef Google Scholar

    [21] Douville E, Bienvenu P, Charlou J L, et al.Yttrium and rare earth elements in fluids from various deep-sea hydrothermal systems[J]. Geochimica et Cosmochimica Acta, 1999, 63(5):627-643. doi: 10.1016/S0016-7037(99)00024-1

    CrossRef Google Scholar

    [22] Karakaya M Ç, Karakaya N, Küpeli Ş, et al.Mine-ralogy and geochemical behavior of trace elements of hydrothermal alteration types in the volcanogenic massive sulfide deposits, NE Turkey[J]. Ore Geology Reviews, 2012, 48:197-224. doi: 10.1016/j.oregeorev.2012.03.007

    CrossRef Google Scholar

    [23] Sverjensky D A.Europium redox equilibria in aqueous solution[J]. Earth and Planetary Science Letters, 1984, 67(1):70-78. doi: 10.1016/0012-821X(84)90039-6

    CrossRef Google Scholar

    [24] Wood S A.The aqueous geochemistry of the rare-earth elements and yttrium:2.Theoretical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure[J]. Chemical Geology, 1990, 88(1):99-125.

    Google Scholar

    [25] Lewis A J, Palmer M R, Sturchio N C, et al.The rare earth element geochemistry of acid-sulphate and acid-sulphate-chloride geothermal systems from Yellowstone National Park, Wyoming, USA[J]. Geochimica et Cosmochimica Acta, 1997, 61(4):695-706. doi: 10.1016/S0016-7037(96)00384-5

    CrossRef Google Scholar

    [26] Sun S S, Mcdonough W F.Chemical and isotopic sys-tematics of oceanic basalts:Implications for mantle composition and processes[J]. Geological Society London Special Publications, 1989, 42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [27] Mitra A, Elderfield H, Greaves M J.Rare earth elements in submarine hydrothermal fluids and plumes from the Mid-Atlantic Ridge[J]. Marine Chemistry, 1994, 46(3):217-235. doi: 10.1016/0304-4203(94)90079-5

    CrossRef Google Scholar

    [28] Honnorez J.Hydrothermal alteration vs.ocean-floor me-tamorphism.A comparison between two case histories:The TAG hydrothermal mound (Mid-Atlantic Ridge) vs.DSDP/ODP Hole 504B (Equatorial East Pacific)[J]. Comptes Rendus Geoscience, 2003, 335(10-11):781-824. doi: 10.1016/j.crte.2003.08.009

    CrossRef Google Scholar

    [29] Środoń J.Nature of mixed-layer clays and mechanisms of their formation and alteration[J]. Annual Review of Earth and Planetary Sciences, 1999, 27:19-53.

    Google Scholar

    [30] Simmons S F.Hydrothermal minerals and precious me-tals in the Broadlands-Ohaaki geothermal system:Implications for understanding low-sulfidation epithermal environments[J]. Economic Geology, 2000, 95(5):971-999. doi: 10.2113/gsecongeo.95.5.971

    CrossRef Google Scholar

    [31] Giorgetti G, Monecke T, Kleeberg R, et al.Low-temper-ature hydrothermal alteration of trachybasalt at Conical Seamount, Papua New Guinea:Formation of smectite and metastable precursor phases[J]. Clays and Clay Minerals, 2009, 57(6):725-741. doi: 10.1346/CCMN.2009.0570606

    CrossRef Google Scholar

    [32] Tivey M K, Stakes D S, Cook T L, et al.A model for growth of steep-sided vent structures on the Endeavour Segment of the Juan de Fuca Ridge:Results of a petrologic and geochemical study[J]. Journal of Geophysical Research Solid Earth, 1999, 104(B10):22859-22883. doi: 10.1029/1999JB900107

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(1)

Article Metrics

Article views(1968) PDF downloads(77) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint