Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 6
Article Contents

Rui-liang LI, Zheng-yao JIN, Biao CHEN, Jian-hua TIAN, Xin WAN, Na LI. Lead Isotope Study on the Source of Copper Material for Bronze Vessels in Dongdazhangzi Warring States Period Cemetery, Liaoning Province[J]. Rock and Mineral Analysis, 2018, 37(6): 618-625. doi: 10.15898/j.cnki.11-2131/td.201803220027
Citation: Rui-liang LI, Zheng-yao JIN, Biao CHEN, Jian-hua TIAN, Xin WAN, Na LI. Lead Isotope Study on the Source of Copper Material for Bronze Vessels in Dongdazhangzi Warring States Period Cemetery, Liaoning Province[J]. Rock and Mineral Analysis, 2018, 37(6): 618-625. doi: 10.15898/j.cnki.11-2131/td.201803220027

Lead Isotope Study on the Source of Copper Material for Bronze Vessels in Dongdazhangzi Warring States Period Cemetery, Liaoning Province

More Information
  • BACKGROUNDAs a high-grade cemetery in Liaoning Province and Northeastern Asia in the Warring States Period, Dongdazhangzi cemetery has received a lot of attention since it was excavated. Previous studies mainly focus on the structure of the tombs, the typology of burial objects, and the cultural properties. The provenance studies for bronze objects are lacking. OBJECTIVESTo discuss the provenance of bronzes in the Dongdazhangzi cemetery. METHODSICP-OES, SEM-EDS and TIMS have been used to analyze the chemical and lead isotopic compositions of 7 bronze samples from tomb No.03JDM4. RESULTSChemical analysis revealed that there are 4 lead-tin bronzes and 2 tin bronzes out of all 7 samples, but the alloy type of the rest is yet unknown. The function of the objects is basically matched with the properties of the alloy. Lead isotope analysis indicated that the copper is unlikely to come from copper mines such as Inner Mongolia Linxi Dajing, Liaoning Hongtoushan and Shanxi Zhongtiaoshan. The lead isotope ratios of 5 samples, which contain lead exceeding 2%, range from 17.685 to 17.941 for 206Pb/204Pb, 15.530 to 15.612 for 207Pb/204Pb, 38.080 to 38.404 for 208Pb/204Pb. The lead sources are likely from the Qingchengzi lead-zinc deposit in Liaoning Province. CONCLUSIONSThis study contributes to the provenance study of bonzes in Dongdazhangzi Warring States cemetery in Liaoning Province. At the same time, scientific evidence for the research of the trade and circulation of metal sources between Western Liaoning and Liaodong Peninsula during the Warring States Period is provided, as well as the exploitation history of the metal resources of Liaodong Peninsula.
  • 加载中
  • [1] Frederik W R, Thilo R, Ernst P.Copper for thepharaoh:Identifying multiple metal sources for Ramesses'workshops from bronze and crucible remains[J]. Journal of Archaeological Science, 2017, 80:50-73. doi: 10.1016/j.jas.2017.01.017

    CrossRef Google Scholar

    [2] Farquhar R M, Hancock R G V, Pavlish L A.Lead isotope ratios in 16th century copperware traded to North America:The Swedish connection[J]. Canadian Journal of Physics, 2018, 96(6):438-444.

    Google Scholar

    [3] Hsu Y K, Rawson J, Pollard A M, et al.Application of kernel density estimates to lead isotope compositions of bronzes from Ningxia, North-West China[J]. Archaeometry, 2018, 60(1):128-143. doi: 10.1111/arcm.v60.1

    CrossRef Google Scholar

    [4] Ling J, Hjarthner-Holdar E, Grandin L, et al.Moving metals or indigenous mining? Provenancing Scandinavian bronze age artefacts by lead isotopes and trace elements[J]. Journal of Archaeological Science, 2013, 40(1):291-304. doi: 10.1016/j.jas.2012.05.040

    CrossRef Google Scholar

    [5] Han W R, Kim S J, Han M S, et al.Manufacturing technique and provenance analysis of bronze artefacts excavated from Pungnap earthen fortress[J]. Korean Journal of Cultural Heritage Studies, 2015, 48(2):110-119.

    Google Scholar

    [6] Zhangsun Y Z, Liu R L, Jin Z Y, et al.Lead isotope analyses revealed the key role of Chang'an in the mirror production and distribution network during the Han Dynasty[J]. Archaeometry, 2017, 59(4):685-713. doi: 10.1111/arcm.12274

    CrossRef Google Scholar

    [7] 贾腊江, 姚远, 赵丛苍, 等.秦早期青铜器中铅料矿源分析[J].自然科学史研究, 2015, 34(1):97-104. doi: 10.3969/j.issn.1000-0224.2015.01.008

    CrossRef Google Scholar

    Jia L J, Yao Y, Zhao C C, et al.Mineral sources of lead aggregate about Early Qin bronze wares[J]. Studies in the History of Natural Sciences, 2015, 34(1):97-104. doi: 10.3969/j.issn.1000-0224.2015.01.008

    CrossRef Google Scholar

    [8] 张依依.东大杖子墓地研究[D].沈阳: 辽宁大学, 2016.

    Google Scholar

    Zhang Y Y.Research on Dongdazhangzi Cemetery[D]. Shenyang: Liaoning University, 2016.

    Google Scholar

    [9] 华玉冰, 孙建军.辽宁建昌东大杖子墓地燕与土著文化的交流[J].大众考古, 2016(10):28-32.

    Google Scholar

    Hua Y B, Sun J J.Yan exchanges with indigenous cultures in Dongdazhangzi cemetery of Liaoning Province[J]. Popular Archaeology, 2016(10):28-32.

    Google Scholar

    [10] 赵鹏.辽宁建昌东大杖子墓地研究[D].大连: 辽宁师范大学, 2017.

    Google Scholar

    Zhao P.The Study on the Dongdazhangzi Cemetery in Jianchang, Liaoning Province[D]. Dalian: Liaoning Normal University, 2017.

    Google Scholar

    [11] 夏辉, 王小强, 杜天军, 等.五酸和硝酸微波消解法结合ICP-OES技术测定多金属矿中多种元素的对比研究[J].岩矿测试, 2015, 34(3):297-301.

    Google Scholar

    Xia H, Wang X Q, Du T J, et al.Determination of multi-elements in polymetallic ores by ICP-OES with mixed acids and nitric acid microwave digestion[J]. Rock and Mineral Analysis, 2015, 34(3):297-301.

    Google Scholar

    [12] 孙淑云, 潜伟.古代铜、砷铜和青铜的使用与机械性能综述[C].第二届中日机械技术史国际学术会议论文集, 2000: 237-245.

    Google Scholar

    Sun S Y, Qian W.A Review on Early Use and Mechanical Properties of Copper, Arsenic Copper and Bronze[C]. Proceedings of the Second China-Japan International Conference on History of Mechanical Technology, 2000: 237-245.

    Google Scholar

    [13] 应立娟, 王阔, 王开建.西藏驱龙-甲玛-邦铺铜矿集区铅同位素地球化学示踪研究[J].岩矿测试, 2016, 35(3):320-328.

    Google Scholar

    Ying L J, Wang K, Wang K J.Lead isotope geochemistry in the Qulong-Jiama-Bangpu ore concentrated area of Tibet[J]. Rock and Mineral Analysis, 2016, 35(3):320-328.

    Google Scholar

    [14] 金正耀.铅同位素示踪方法应用于考古研究的进展[J].地球学报, 2003, 24(6):548-551. doi: 10.3321/j.issn:1006-3021.2003.06.012

    CrossRef Google Scholar

    Jin Z Y.Achievements in applying Pb-isotope analysis to ancient Chinese bronzes[J]. Acta Geoscientica Sinica, 2003, 24(6):548-551. doi: 10.3321/j.issn:1006-3021.2003.06.012

    CrossRef Google Scholar

    [15] 陈铁梅.科技考古学[M].北京:北京大学出版社, 2008:131.

    Google Scholar

    Chen T M.Archaeological Science[M]. Beijing:Beijing University Press, 2008:131.

    Google Scholar

    [16] 李延祥, 王兆文, 王连伟, 等.大井古铜矿冶炼技术及产品特征初探[J].有色金属, 2001, 53(3):92-96.

    Google Scholar

    Li Y X, Wang Z W, Wang L W, et al.Smelting technology of Dajing ancient copper mining and smelting site in Chifeng (Inner Mongolia Region)[J]. Nonferrous Metals Engineering, 2001, 53(3):92-96.

    Google Scholar

    [17] 储雪蕾, 霍卫国, 张巽.内蒙古林西县大井铜多金属矿床的硫、碳和铅同位素及成矿物质来源[J].岩石学报, 2002, 18(4):566-574.

    Google Scholar

    Chu X L, Huo W G, Zhang X.S, C, and Pb isotopes and sources of metallogenetic elements of the Dajing Cu-polymetallic deposit in Linxi county, Inner Mongolia, China[J]. Acta Petrologica Sinica, 2002, 18(4):566-574.

    Google Scholar

    [18] 冯建忠, 艾霞, 吴俞斌, 等.内蒙大井多金属矿床稳定同位素地球化学特征[J].吉林地质, 1994, 13(3):60-66.

    Google Scholar

    Feng J Z, Ai X, Wu Y B, et al.The stable isotopic geochemistry of the Dajing polymetallic deposit, Inner Mongolia[J]. Jilin Geology, 1994, 13(3):60-66.

    Google Scholar

    [19] 顾连兴, 汤晓茜, 吴昌志, 等.辽宁红透山块状硫化物矿床矿石糜棱岩铜-金富集机制[J].地学前缘, 2004, 11(2):339-351. doi: 10.3321/j.issn:1005-2321.2004.02.003

    CrossRef Google Scholar

    Gu L X, Tang X Q, Wu C Z, et al.Mechanisms of Cu-Au enrichment in ore mylonites of the Hongtoushan massive sulphide deposit, Liaoning, NE China[J]. Earth Science Frontiers, 2004, 11(2):339-351. doi: 10.3321/j.issn:1005-2321.2004.02.003

    CrossRef Google Scholar

    [20] 聂凤军, 裴荣富, 吴良士.内蒙古白乃庙地区铜(金)和金矿床钕、锶和铅同位素研究[J].矿床地质, 1994, 13(4):331-344.

    Google Scholar

    Nie F J, Pei R F, Wu L S.Nd, Sr and Pb isotopic study of copper (gold) and gold deposits in Bainaimiao area, Inner Mongolia[J]. Mineral Deposits, 1994, 13(4):331-344.

    Google Scholar

    [21] 孙超.小西南岔金铜矿床同位素地质学研究[J].矿产与地质, 1994, 8(2):119-123.

    Google Scholar

    Sun C.Research on isotope geology of Xiaoxinancha Au-Cu deposit[J]. Mineral Resources and Geology, 1994, 8(2):119-123.

    Google Scholar

    [22] 罗武干, 秦颍, 王昌燧, 等.中条山与皖南地区古铜矿冶炼产物的比较分析[J].岩矿测试, 2007, 26(3):209-212. doi: 10.3969/j.issn.0254-5357.2007.03.009

    CrossRef Google Scholar

    Luo W G, Qin Y, Wang C S, et al.Analysis of ancient smelting products from ancient copper ore refinery sites in Zhongtiaoshan area of Shanxi Province and Southern Anhui Province[J]. Acta Petrologica Sinica, 2007, 26(3):209-212. doi: 10.3969/j.issn.0254-5357.2007.03.009

    CrossRef Google Scholar

    [23] 徐文忻, 汪礼明, 李蘅, 等.中条山铜矿床同位素地球化学研究[J].地球学报, 2005, 26(增刊):130-133.

    Google Scholar

    Xu W X, Wang L M, Li H, et al.Isotope geochemistry of copper deposits in the Zhongtiao mountain[J]. Acta Geoscientica Sinaca, 2005, 26(Supplement):130-133.

    Google Scholar

    [24] 张乾, 战新志, 裘愉卓, 等.内蒙古孟恩陶勒盖银铅锌铟矿床的铅同位素组成及矿石铅的来源探讨[J].地球化学, 2002, 31(3):253-258. doi: 10.3321/j.issn:0379-1726.2002.03.005

    CrossRef Google Scholar

    Zhang Q, Zhan X Z, Qiu Y Z, et al.Lead isotopic composition and lead source of the Meng'entaolegai Ag-Pb-Zn-In deposit in Inner Mongolia[J]. Geochimica, 2002, 31(3):253-258. doi: 10.3321/j.issn:0379-1726.2002.03.005

    CrossRef Google Scholar

    [25] 张丽华, 刁乃昌.辽宁岫岩东胜铅矿铅同位素数据处理及物质来源的讨论[J].河北地质学院学报, 1984, 10(1):57-63.

    Google Scholar

    Zhang L H, Diao N C.The lead isotope data processing and a discussion of metal resources of the Dongsheng lead deposit, Xiuyan, Liaoning[J]. Journal of Hebei Geology of University, 1984, 10(1):57-63.

    Google Scholar

    [26] 张乾.辽宁桓仁多金属矿床的铅同位素组成——显生宙单阶段幔源铅的证据[J].地球化学, 1994, 23(增刊):32-38.

    Google Scholar

    Zhang Q.Isotopic compositions of Huanren polymetallic ore deposit, Liaoning Province:Evidence from phanerozoic single-stage mantle-source lead[J]. Geochimica, 1994, 23(Supplement):32-38.

    Google Scholar

    [27] 王碧雪.辽宁青城子钼-铅锌-银矿床硫化物标型特征研究[D].北京: 中国地质大学, 2017.https://wenku.baidu.com/view/1cb4def9700abb68a982fbb9.html

    Google Scholar

    Wang B X.Mineral Typomorphic Characteristics of Sulfide Minerals on the Mo-Pb-Zn-Ag Ore Area in Qingchengzi Region, Liaoning Province, China[D]. Beijing: China University of Geosciences, 2017.

    Google Scholar

    [28] 宋运红, 杨凤超, 闫国磊, 等.辽宁青城子铅锌矿成矿流体特征和成矿物质来源示踪[J].地质与勘探, 2017, 53(2):259-269.

    Google Scholar

    Song Y H, Yang F C, Yan G L, et al.Characteristics of mineralization fluids and tracers of mineralization material sources of the Qingchengzi lead-zinc deposit in Liaoning Province[J]. Geology and Exploration, 2017, 53(2):259-269.

    Google Scholar

    [29] 蒋少涌.辽宁青城子铅锌矿床的铅同位素组成及其地质特征[J].北京大学学报(自然科学版), 1987(4):112-119.

    Google Scholar

    Jiang S Y.Pb-isotope composition at Qingchengzi lead-zinc deposit and its geological application[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 1987(4):112-119.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(1817) PDF downloads(52) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint