Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 4
Article Contents

Rong-zhen XU, Fei LIU, Ji-hong JING, Zi-yi AN, Sheng-zhang ZOU. Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in Typical Shallow Pore Water and Karst Water[J]. Rock and Mineral Analysis, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004
Citation: Rong-zhen XU, Fei LIU, Ji-hong JING, Zi-yi AN, Sheng-zhang ZOU. Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in Typical Shallow Pore Water and Karst Water[J]. Rock and Mineral Analysis, 2018, 37(4): 411-418. doi: 10.15898/j.cnki.11-2131/td.201801120004

Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in Typical Shallow Pore Water and Karst Water

More Information
  • BACKGROUNDIn recent years, reports of the detection of PAHs in groundwater have gradually increased, but research on PAHs in groundwater of major hydrogeological units in China is not being conducted. OBJECTIVESTo study and compare the distribution characteristics of PAHs in groundwater under different hydrogeological conditions, using a total of 82 samples of shallow pore water and Karst groundwater samples collected in the Huabei plain, the Pearl River Delta plain, and the Southwestern Karst area. METHODSGas Chromatography-Mass Spectrometry (GC-MS) was used to test PAHs in groundwater samples, and statistical methods were used to compare the detection frequency, concentration and composition of PAHs in the three different areas. RESULTS16 PAHs were detected and each PAH was detected in at least one sample. The highest detection rate of PAHs was chrysene (6.10%). The PAH with the highest concentration was naphthalene (5.41 μg/L). Only the concentration of benzo(a)pyrene exceeded the Class Ⅲ limit in the standard for groundwater quality, and the over-standard rate was 2.44%. The PAHs in groundwater are mainly 2-4 rings, but the composition of PAHs in the three regions was different. The relative proportion of 4-rings PAHs in the northern pore water was high, accounting for 52.48%, whereas the pore water in the South and the Karst water in the Southwest were dominated by 3-rings (56.60%) and 2-rings (95.66%), respectively. CONCLUSIONSThe main cause of contamination of PAHs in Northern pore water was by combustion. The PAHs contamination in the Southern pore water was related to the industrial layout of the Pearl River Delta, whereas the PAHs of Qujing Karst water were mainly affected by atmospheric precipitation. The detection differences of PAHs in different districts were related to their physicochemical properties, hydrogeological conditions, pollution sources, meteorological and hydrological factors. The results provide basic data support for groundwater PAHs pollution monitoring and the formulation of a groundwater related standard in China.
  • 加载中
  • [1] Menzie C A, Potoki B B, Santodomato J.Exposure to carcinogenic PAHs in the environment[J].Environmental Science & Technology, 1992, 26(7):1278-1284.

    Google Scholar

    [2] Harkov R, Greenberg A, Darack F, et al.Summer time variations in polycyclic aromatic hydro-carbons at four sites in New Jersey[J].Environmental Science & Technology, 1984, 18(4):287-291.

    Google Scholar

    [3] Krupadam R J, Khan M S, Wate S R.Removal of probable human carcinogenic polycyclic aromatic hydrocarbons from contaminated water using molecularly imprinted polymer[J].Water Research, 2010, 44(3):681-688. doi: 10.1016/j.watres.2009.09.044

    CrossRef Google Scholar

    [4] 曹云者, 柳晓娟, 谢云峰, 等.我国主要地区表层土壤中多环芳烃组成及含量特征分析[J].环境科学学报, 2012, 32(1):197-203.

    Google Scholar

    Cao Y Z, Liu X J, Xie Y F, et al.Patterns of PAHs concentrations and components in surface soils of main areas in China[J].Acta Scientiae Circumstantiae, 2012, 32(1):197-203.

    Google Scholar

    [5] Page D S, Boehm P D, Douglas G S, et al.Pyrogenic polycyclic aromatic hydrocarbons in sediments record past human activity:A case study in Prince William Sound, Alaska[J]. Marine Pollution Bulletin, 1999, 38(4):247-260. doi: 10.1016/S0025-326X(98)00142-8

    CrossRef Google Scholar

    [6] Argiriadis E, Rada E C, Vecchiato M, et al.Assessing the influence of local sources on POPs in atmospheric depositions and sediments near Trento (Italy)[J].Atmospheric Environment, 2014, 98:32-40. doi: 10.1016/j.atmosenv.2014.08.035

    CrossRef Google Scholar

    [7] Luo X, Zheng Y, Lin Z, et al.Evaluating potential non-point source loading of PAHs from contaminated soils:A fugacity-based modeling approach[J].Environmental Pollution, 2015, 196:1-11. doi: 10.1016/j.envpol.2014.09.011

    CrossRef Google Scholar

    [8] Mielke H W, Wang G D, Gonzales C R, et al.PAHs and metals in the soils of inner-city and suburban New Orleans, Louisiana, USA[J].Environmental Toxicology and Pharmacology, 2004, 18:243-247. doi: 10.1016/j.etap.2003.11.011

    CrossRef Google Scholar

    [9] Ma L L, Chu S G, Wang X T, et al.Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing, China[J].Chemosphere, 2005, 58:1355-1363. doi: 10.1016/j.chemosphere.2004.09.083

    CrossRef Google Scholar

    [10] Wang X C, Sun S, Ma H Q, et al.Sources and distri-bution of aliphatic and polycyclic aromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao, China[J].Marine Pollution Bulletin, 2006, 52(2):129-138. doi: 10.1016/j.marpolbul.2005.08.010

    CrossRef Google Scholar

    [11] Shi Z, Tao S, Pan B, et al.Partitioning and source diagnostics of polycyclic aromatic hydrocarbons in rivers in Tianjin, China[J].Environmental Pollution, 2007, 146:492-500. doi: 10.1016/j.envpol.2006.07.009

    CrossRef Google Scholar

    [12] Liu M, Cheng S B, Ou D N, et al.Characterization, identification of road dust PAHs in central Shanghai areas, China[J].Atmospheric Environment, 2007, 41:8785-8795. doi: 10.1016/j.atmosenv.2007.07.059

    CrossRef Google Scholar

    [13] Jiang Y, Yves U J, Sun H, et al.Distribution, composi-tional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China[J].Ecotoxicology & Environmental Safety, 2016, 126(7):154-162.

    Google Scholar

    [14] Velaa N, Martínez-Menchónb M, Navarrob G, et al.Removal of polycyclic aromatic hydrocarbons (PAHs) from groundwater by heterogeneous photocatalysis under natural sunlight[J].Journal of Photochemistry and Photobiology A-Chemistry, 2012, 232(5):32-40.

    Google Scholar

    [15] 崔虎群, 康卫东, 李文鹏, 等.定靖油气田区地下水有机污染特征初步分析[J].环境化学, 2016, 35(6):1212-1218.

    Google Scholar

    Cui H Q, Kang W D, Li W P, et al.Preliminary analysis on the organic contamination in groundwater of Dingjing oil-gas field region[J].Environmental Chemistry, 2016, 35(6):1212-1218.

    Google Scholar

    [16] 苗迎, 孔祥胜.南宁市多环境介质中多环芳烃分布特征[J].环境科学, 2016, 37(11):4333-4340.

    Google Scholar

    Miao Y, Kong X S.Distribution characteristics of polycyclic aromatic hydrocarbons in environmental media in Nanning city[J].Environmental Science, 2016, 37(11):4333-4340.

    Google Scholar

    [17] 昌盛, 耿梦娇, 刘琰, 等.滹沱河冲洪积扇地下水中多环芳烃的污染特征[J].中国环境科学, 2016, 36(7):2058-2066. doi: 10.3969/j.issn.1000-6923.2016.07.022

    CrossRef Google Scholar

    Chang S, Geng M J, Liu Y, et al.Pollution characteristic of polycyclic aromatic hydrocarbons in the groundwater of Hutuo River Pluvial Fan[J].China Environmental Science, 2016, 36(7):2058-2066. doi: 10.3969/j.issn.1000-6923.2016.07.022

    CrossRef Google Scholar

    [18] 龚香宜, 何炎志, 孙云雷.江汉平原四湖流域上区地下水中多环芳烃分布特征与源解析[J].环境科学学报, 2015, 35(3):789-796.

    Google Scholar

    Gong X Y, He Y Z, Sun Y L.Distribution and source of polycyclic aromatic hydrocarbons in groundwater in the upper region of Sihu Lake Basin from Jianghan Plain[J].Acta Scientiae Circumstantiae, 2015, 35(3):789-796.

    Google Scholar

    [19] 赵红梅, 赵华, 毛洪亮, 等.华北平原滹沱河冲洪积扇第四纪地层划分[J].地层学杂志, 2014, 38(2):137-146.

    Google Scholar

    Zhao H M, Zhao H, Mao H L, et al.Quaternary stratigraphy division of Hutuohe alluvial fan deposits in the North China Plain[J].Journal of Stratigraphy, 2014, 38(2):137-146.

    Google Scholar

    [20] 李亚松, 张兆吉, 费宇红, 等.河北省滹沱河冲积平原地下水质量及污染特征研究[J].地球学报, 2014, 35(2):169-176.

    Google Scholar

    Li Y S, Zhang Z J, Fei Y H, et al.Groundwater quality and contamination characteristics in the Hutuo River Plain area, Hebei Province[J].Acta Geoscientica Sinica, 2014, 35(2):169-176.

    Google Scholar

    [21] 郭秀红. 珠江三角洲地区浅层地下水有机污染研究[D]. 北京: 中国地质大学(北京), 2006.

    Google Scholar

    Guo X H. Research on Characteristics of Shallow Groundwater Organic Contamination in Pearl River Delta[D]. Beijing: China University of Geosciences (Beijing), 2006.

    Google Scholar

    [22] 杨艳华, 朱培秋, 和怀忠, 等. 云南省地下水水资源评价[R]. 2002.

    Google Scholar

    Yang Y H, Zhu P Q, He H Z, et al. Water Resource Assessment on Groundwater in Yunnan Province[R]. 2002.

    Google Scholar

    [23] Suman S, Sinha A, Tarafdar A.Polycyclic aromatic hydrocarbons (PAHs) concentration levels, pattern, source identification and soil toxicity assessment in urban traffic soil of Dhanbad, India[J].Science of the Total Environment, 2016, 545-546:353-360. doi: 10.1016/j.scitotenv.2015.12.061

    CrossRef Google Scholar

    [24] 于国光, 王铁冠, 吴大鹏.薪柴燃烧源和燃煤源中多环芳烃的成分谱研究[J].生态环境, 2007, 16(2):285-289. doi: 10.3969/j.issn.1674-5906.2007.02.004

    CrossRef Google Scholar

    Yu G G, Wang T G, Wu D P.Study on fingerprints of PAHs from the combustion of bavin and coal[J].Ecology and Environment, 2007, 16(2):285-289. doi: 10.3969/j.issn.1674-5906.2007.02.004

    CrossRef Google Scholar

    [25] 王丽娟.多环芳烃类污染物在部分水体中的分布及其降解途径[J].渔业研究, 2017, 39(4):325-330.

    Google Scholar

    Wang L J.Distribution of polycyclic aromatic hydrocarbons in some water bodies and degradation pathways[J].Journal of Fisheries Research, 2017, 39(4):325-330.

    Google Scholar

    [26] Ford D C, Williams P.Karst Hydrogeology and Geo-morphology[M].Chichester:John Wiley & Sons, 2007.

    Google Scholar

    [27] 蓝家程, 孙玉川, 师阳, 等.岩溶地下河流域表层土壤多环芳烃污染特征及来源分析[J].环境科学, 2014, 35(8):2937-2943.

    Google Scholar

    Lan J C, Sun Y C, Shi Y, et al.Source and contamination of polycyclic aromatic hydrocarbons in surface soil in Karst underground river basin[J].Environmental Science, 2014, 35(8):2937-2943.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(2)

Article Metrics

Article views(1111) PDF downloads(34) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint