Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2018 Vol. 37, No. 1
Article Contents

Chao-guan HUANG, Yi-shu MENG, Huan-hua GUO, Ling-yu LIN, Chun-tao YANG. Determination of Chromium, Iron, Molybdenum and Silicon in Ti-Al Alloy by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065
Citation: Chao-guan HUANG, Yi-shu MENG, Huan-hua GUO, Ling-yu LIN, Chun-tao YANG. Determination of Chromium, Iron, Molybdenum and Silicon in Ti-Al Alloy by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion[J]. Rock and Mineral Analysis, 2018, 37(1): 30-35. doi: 10.15898/j.cnki.11-2131/td.201704240065

Determination of Chromium, Iron, Molybdenum and Silicon in Ti-Al Alloy by Inductively Coupled Plasma-Optical Emission Spectrometry with Sodium Peroxide Alkali Fusion

  • Single acid cannot completely dissolve Ti-Al alloy with high Ti content when determining chromium, iron, molybdenum and silicon by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES). A small amount of impurity remains after dissolving the samples by mixed acid. Furthermore, the precipitation occurs readily during re-dissolution, even if using concentrated aqua regia. In this study, the Ti-Al alloys were fused with sodium peroxide for 20 min at 700℃ and were acidified by hydrochloric acid. The method for the determination of chromium, iron, molybdenum and silicon in Ti-Al alloy by ICP-OES was established. The interference from the titanium matrix in samples was improved by the titanium matrix matching method when the concentration of titanium was greater than 200 μg/mL. Additionally, the amount of salt content in solution was controlled by sodium peroxide to ensure the stability of determination. The detection limits and lower determination limits are 0.02-0.05 μg/mL and 0.07-0.17 μg/mL, respectively. The method has been verified by analyzing the national standard material (GBW02501). The relative standard deviations (RSDs) are 0.90%-4.89%, the relative errors are 1.2%-3.6% and the recoveries are 91.6%-103.8%. Compared with acid solution, the dissolution of the samples is complete using the proposed method. Moreover, the method is accurate, reliable, and suitable for multi-element determination of Ti-Al alloy with high titanium content.
  • 加载中
  • [1] Chen R R, Ding H S, Yang J R, et al.Temperature field calculation on cold crucible continuous melting and directional solidifying Ti50Al alloys[J].Rare Metal Materials & Engineering, 2012, 22(3):647-653.

    Google Scholar

    [2] Chen X, Xie F Q, Ma T J, et al.Microstructure evolution and mechanical properties of linear friction welded Ti2AlNb alloy[J].Journal of Alloys & Compounds, 2015, 646:490-496.

    Google Scholar

    [3] 陈学源.溴化碲分光光度法测定钛铝合金中微量碲[J].稀有金属材料与工程, 1997, 26(4):56-59.

    Google Scholar

    Chen X Y.TeBr4 spectrophotometric determination of trace Te in TiAl alloy[J].Rare Metal Materials and Engineering, 1997, 26(4):56-59.

    Google Scholar

    [4] 牛金龙, 陈学源.铀试剂光度法测定钛铝合金中微量锑[J].稀有金属材料与工程, 1997, 26(6):56-59.

    Google Scholar

    Niu J L, Chen X Y.5-Br-PADAP extraction spectro-photometric determination of trace antimony in TiAl alloy[J].Rare Metal Materials and Engineering, 1997, 26(6):56-59.

    Google Scholar

    [5] 陈学源, 牛金龙.钛铝合金中微量磷的测定[J].稀有金属材料与工程, 1998, 27(2):119-121.

    Google Scholar

    Chen X Y, Niu J L.Determination of trace phosphorus in titanium-aluminium alloys[J]. Rare Metal Materials and Engineering, 1998, 27(2):119-121.

    Google Scholar

    [6] 高颂, 庞晓辉, 王桂军.电感耦合等离子体原子发射光谱法测定高铌钛铝合金中硼硅钨锰[J].冶金分析, 2013, 33(11):59-62.

    Google Scholar

    Gao S, Pang X H, Wang G J.Determination of boron, silicon, tungsten and manganese in high niobium titanium aluminum alloy by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2013, 33(11):59-62.

    Google Scholar

    [7] 杜米芳.电感耦合等离子体原子发射光谱法测定钛合金中钼锆铌[J].冶金分析, 2015, 35(10):77-81.

    Google Scholar

    Du M F.Determination of molybdenum, zirconium and niobium in titanium alloy by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(10):77-81.

    Google Scholar

    [8] 高颂, 庞晓辉, 梁红玲.电感耦合等离子体原子发射光谱法测定TG6钛合金中镁钒铬铁钴铜锰钼钨[J].冶金分析, 2015, 35(3):51-55.

    Google Scholar

    Gao S, Pang X H, Liang H L.Determination of magnesium, vanadium, chromium, iron, cobalt, copper, manganese, molybdenum and tungsten in TG6 titanium alloy by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(3):51-55.

    Google Scholar

    [9] 王卿, 赵伟, 张会堂, 等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定钛铁矿中铬磷钒[J].岩矿测试, 2012, 31(6):971-974.

    Google Scholar

    Wang Q, Zhao W, Zhang H T, et al.Determination of Cr, V and P in ilmenite by inductively coupled plasma atomic emission spectrometry with sodium peroxide fusion[J].Rock and Mineral Analysis, 2012, 31(6):971-974.

    Google Scholar

    [10] 王小强, 夏辉, 秦九红, 等.过氧化钠碱熔-电感耦合等离子体发射光谱法测定多金属矿中的锡钨钛等主次量成分[J].岩矿测试, 2017, 36(1):52-58.

    Google Scholar

    Wang X Q, Xia H, Qin J H, et al.Determination of Sn, W, Ti and other elements in polymetallic ore by inductively coupled plasma atomic emission spectrometry with sodium peroxide fusion[J].Rock and Mineral Analysis, 2017, 36(1):52-58.

    Google Scholar

    [11] 马兰, 余琼, 覃广河, 等.电感耦合等离子体原子发射光谱法测定硼铁合金中的硼[J].理化检验(化学分册), 2015, 51(4):478-479.

    Google Scholar

    Ma L, Yu Q, Qin G H, et al.Determination of boron in ferroboron alloy by ICP-AES[J].Physical Testing and Chemical Analysis (Part B:Chemical Analysis), 2015, 51(4):478-479.

    Google Scholar

    [12] 聂富强, 杜丽丽, 李景滨, 等.碱熔-电感耦合等离子体发射光谱法(ICP-OES)测定高碳高硅钢中的硅含量[J].中国无机分析化学, 2015, 5(4):74-78.

    Google Scholar

    Nie F Q, Du L L, Li J B, et al.Determination of silicon content in high carbon and high silicon steel by inductively coupled plasma atomic emission spectrometry with sodium peroxide fusion[J].Chinese Journal of Inorganic Analytical Chemistry, 2015, 5(4):74-78.

    Google Scholar

    [13] 仝晓红, 刘攀, 聂富强.碱熔-电感耦合等离子体原子发射光谱法测定高碳铬铁中铬[J].冶金分析, 2015, 35(9):36-41.

    Google Scholar

    Tong X H, Liu P, Nie F Q.Determination of chromium in high-carbon ferrochrome by alkali fusion-inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2015, 35(9):36-41.

    Google Scholar

    [14] 赵庆令, 李清彩.电感耦合等离子体发射光谱法测定锆钛砂矿中铪钛锆[J].岩矿测试, 2013, 32(6):883-886.

    Google Scholar

    Zhao Q L, Li Q C.Determination of Hf, Ti and Zr in zirconium-titanium placer by inductively coupled plasma atomic emission spectrometry[J].Rock and Mineral Analysis, 2013, 32(6):883-886.

    Google Scholar

    [15] 李红光, 王雪, 王哲, 等.电感耦合等离子体原子发射光谱法测定锆钛砂矿中锆钛铁钍铪[J].冶金分析, 2014, 34(2):62-65.

    Google Scholar

    Li H G, Wang X, Wang Z, et al.Determination of zirconium, titanium, iron, thorium and hafnium in zirconium-titanium placer by inductively coupled plasma atomic emission spectrometry[J].Metallurgical Analysis, 2014, 34(2):62-65.

    Google Scholar

    [16] 成勇.ICP-AES测定钛合金中硅钒铁铝镍钼铬[J].稀有金属材料与工程, 2012, 41(10):183-186.

    Google Scholar

    Cheng Y.Determination of the silicon, vanadium, iron, aluminum, nickel, molybdenum and chromium in titanium alloy by ICP-AES[J].Rare Metal Materials and Engineering, 2012, 41(10):183-186.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(3801) PDF downloads(77) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint