[1] |
胡应模, 陈旭波, 汤明茹.电气石功能复合材料研究进展及前景展望[J].地学前缘, 2014, 21(5):331-337.
Google Scholar
Hu Y M, Chen X B, Tang M R.Research development and prospects of functional tourmaline composites[J].Earth Science Frontiers, 2014, 21(5):331-337.
Google Scholar
|
[2] |
黄雪飞, 张宝林, 李晓利, 等.电气石研究进展及其找矿意义[J].黄金科学技术, 2012, 20(3):56-65.
Google Scholar
Huang X F, Zhang B L, Li X L, et al.Research progress of tourmaline and its prospecting significance[J].Gold Science & Technology, 2012, 20(3):56-65.
Google Scholar
|
[3] |
Hinsberg V J V, Henry D J, Marschall H R.Tourmaline:An ideal indicator of its host environment[J].Canadian Mineralogist, 2011, 49(1):1-16. doi: 10.3749/canmin.49.1.1
CrossRef Google Scholar
|
[4] |
岩石矿物分析编委会.岩石矿物分析(第四版第二分册)[M].北京:地质出版社, 2011:390-396.
Google Scholar
The Editorial Committee of Rock and Mineral Analysis.Rock and Mineral Analysis (Fourth Edition:Volume Ⅱ)[M].Beijing:Geological Publishing House, 2011:390-396.
Google Scholar
|
[5] |
King R W, Kerrich R W, Daddar R.REE distributions in tourmaline:An INAA technique involving pretreatment by B volatilization[J].American Mineralogist, 1988, 73:424-431.
Google Scholar
|
[6] |
de Oliveira E F, Lacerda M A S, Amaral A M, et al. Chemical Composition of Tourmaline by Instrumental Neutron Activation Analysis[C]//Proceedings of International Nuclear Atlantic Conference-INAC 2005 Santos. Brazil, 2005.https://www.researchgate.net/publication/228450779_CHEMICAL_COMPOSITION_OF_TOURMALINES_BY_INSTRUMENTAL_NEUTRON_ACTIVATION_ANALYSIS
Google Scholar
|
[7] |
Aigbe S O, Ewa I O B, Ogunleye P O, et al.Elemental characterization of some Nigerian gemstones:Tourmaline, fluorite and topaz by instrumental neutron activation analysis[J].Journal of Radioanalytical & Nuclear Chemistry, 2013, 295(1):801-805.
Google Scholar
|
[8] |
成学海, 夏传波, 郑建业, 等.封闭压力酸溶-电感耦合等离子体质谱法同时测定电气石中29种元素[J].岩矿测试, 2017, 36(3):231-238.
Google Scholar
Cheng X H, Xia C B, Zheng J Y, et al.Simultaneous determination of 29 trace elements in tourmaline samples by inductively coupled plasma mass spectrometry with pressurized acid decomposition[J].Rock and Mineral Analysis, 2017, 36(3):231-238.
Google Scholar
|
[9] |
Lihareva N, Kosturkova P, Vakarelska T.Application of sodium carbonate-zinc oxide decomposition mixture on ICP-AES determination of boron in tourmaline[J].Fresenius Journal of Analytical Chemistry, 2000, 367(1):84. doi: 10.1007/s002160051603
CrossRef Google Scholar
|
[10] |
Tamer K, Yusuf K, Shao Y J.Determination of tourma-line composition in pegmatite from Buldan, Denizli (Western Anatolia, Turkey) using XRD, XRF, and confocal Raman spectroscopy[J].Spectroscopy Letters, 2013, 46(7):499-506. doi: 10.1080/00387010.2012.760102
CrossRef Google Scholar
|
[11] |
Gullu B, Kadioglu Y K.Use of tourmaline as a potential petrogenetic indicator in the determination of host magma:CRS, XRD and PED-XRF methods[J].Spectrochimica Acta Part A:Molecular & Biomolecular Spectroscopy, 2017, 183:68.
Google Scholar
|
[12] |
李国会, 李小莉.X射线荧光光谱分析熔融法制样的系统研究[J].冶金分析, 2015, 35(7):1-9.
Google Scholar
Li G H, Li X L.Systematic study on the fusion sample preparation in X-ray fluorescence spectrometric analysis[J].Metallurgical Analysis, 2015, 35(7):1-9.
Google Scholar
|
[13] |
Watanabe M.Sample preparation for X-ray fluorescence analysis Ⅳ.Fusion bead method-Part 1:Basic principles[J].Rigaku Journal, 2015, 32(2):12-17.
Google Scholar
|
[14] |
周建辉, 白金峰.熔融玻璃片制样-X射线荧光光谱测定页岩中主量元素[J].岩矿测试, 2009, 28(2):179-181.
Google Scholar
Zhou J H, Bai J F.Determination of major elements in shale samples by X-ray fluorescence spectrometry with fused glass disc sample preparation[J].Rock and Mineral Analysis, 2009, 28(2):179-181.
Google Scholar
|
[15] |
冯晓军.熔融制样-X射线荧光光谱法测定蛇纹石中主次组分[J].冶金分析, 2017, 37(4):27-32.
Google Scholar
Feng X J.Determination of major and minor components in serpentine by X-ray fluorescence spectrometry with fusion sample preparation[J].Metallurgical Analysis, 2017, 37(4):27-32.
Google Scholar
|
[16] |
Berryman E J, Kutzschbach M, Trumbull R B, et al.Tourmaline as a petrogenetic indicator in the Pfitsch Formation, Western Tauern Window, Eastern Alps[J].Lithos, 2017, 284-285:138-155. doi: 10.1016/j.lithos.2017.04.008
CrossRef Google Scholar
|
[17] |
龚仓, 李高湖, 付桂花, 等.X射线荧光光谱法测定富砷地质样品中的主次痕量元素[J].分析试验室, 2014, 33(10):1220-1224.
Google Scholar
Gong C, Li G H, Fu G H, et al.Determination of major, minor and trace elements in geological samples with arsenic by X-ray fluorescence spectrometry[J].Chinese Journal of Analysis Laboratory, 2014, 33(10):1220-1224.
Google Scholar
|