Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2016 Vol. 35, No. 6
Article Contents

Li-qiang WANG, Fu-wei XIE, Yong WANG. U-Pb Geochronology and Trace Element Compositions of Zircon in Biotite Granite from the Bagaladong Pb-Zn Deposit, Tibet and Their Geological Significance[J]. Rock and Mineral Analysis, 2016, 35(6): 650-657. doi: 10.15898/j.cnki.11-2131/td.2016.06.013
Citation: Li-qiang WANG, Fu-wei XIE, Yong WANG. U-Pb Geochronology and Trace Element Compositions of Zircon in Biotite Granite from the Bagaladong Pb-Zn Deposit, Tibet and Their Geological Significance[J]. Rock and Mineral Analysis, 2016, 35(6): 650-657. doi: 10.15898/j.cnki.11-2131/td.2016.06.013

U-Pb Geochronology and Trace Element Compositions of Zircon in Biotite Granite from the Bagaladong Pb-Zn Deposit, Tibet and Their Geological Significance

  • The Bagaladong Pb-Zn deposit is located in the eastern segment of the Gangdese back-arc uplift belt and lacks enough study with no available ages for ores and rocks. Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS) zircon U-Pb dating and in situ trace elements were carried out for mineralization-related biotite granite in the Bagaladong Pb-Zn deposit and are reported in this paper. The crystallization temperatures of zircons in the biotite granite are obtained by using the zircon Ti thermometer. Trace element composition of zircons in the biotite granite indicates a magmatic origin. Fourteen zircons yield a weighted average 206Pb/238U ages of 129.1±2.3 Ma (MSWD=1.5), suggesting that the biotite granite was established in the middle of the Early Cretaceous, which is consistent with the age of magmatic intrusions obtained by previous studies. Zircon has ΣLREEs values of 13.21-530.28 μg/g with an average of 61.90 μg/g and ΣHREEs values of 849.16-3981.54 μg/g with an average of 1826.91 μg/g. Zircon has left-inclined REEs patterns with relative LREEs depletion and HREEs enrichment. These zircons have δCe and δEu values of 1.20-701.77 and 0.01-0.12, respectively, indicating obviously positive Ce anomalies and negative Eu anomalies. Zircons have Ti contents varying from 0.60 to 7.40 and crystallization temperatures of 593.9-795.3℃ with an average of 724.3℃, which partially reflect the diagenetic temperature. It can be concluded that the Bagaladong biotite granite was probably formed during the extrusion stage of collision after the closure of the Bangong Co-Nujiang ocean basin. The age of the biotite granite in the Bagaladong deposit represents the upper limit of the metallogenic epoch and provides important evidence for prospecting the Early Cretaceous Pb-Zn mineralization in the east section of the Gangdese back-arc fault uplift area.
  • 加载中
  • [1] Ding L,Lai Q Z.New Geological Evidence of Crustal Thickening in the Gangdese Block Prior to the Indo-Asian Collision[J].Chinese Science Bulletin,2003,48(15):1604-1610. doi: 10.1007/BF03183969

    CrossRef Google Scholar

    [2] 翟庆国,李才,王天武,等.西藏折无地区晚白垩世二云母花岗岩地球化学特征及构造环境[J].吉林大学学报(地球科学版),2004,34(1):27-31.

    Google Scholar

    Zhai Q G,Li C,Wang T W,et al.The Geochemistry and Tectonic Settings of Two-Micagranite in Zhewu Area,Tibet[J].Journal of Jilin University (Earth Science Edition),2004,34(1):27-31.

    Google Scholar

    [3] 翟庆国,李才,李惠民,等.西藏冈底斯中部淡色花岗岩锆石U-Pb年龄及其地质意义[J].地质通报,2005,24(4):349-353.

    Google Scholar

    Zhai Q G,Li C,Li H M,et al.U-Pb Zircon Age of Leucogranite in the Central Ggangdise,Tibet,and Its Geological Significance[J].Geological Bulletin of China,2005,24(4):349-353.

    Google Scholar

    [4] 杨德明,黄映聪,戴琳娜,等.西藏嘉黎县措麦地区含石榴子石二云母花岗岩锆石SHRIMP U-Pb年龄及其意义[J].地质通报,2005,24(3):235-238.

    Google Scholar

    Yang D M,Huang Y C,Dai L N.SHRIMP Zircon U-Pb Age of Garnet-bearing Two-Mica Granite at Comai Township,Lhari County,Tibet,and Its Significance[J].Geological Bulletin of China,2005,24(3):235-238.

    Google Scholar

    [5] 和钟铧,杨德明,王天武.冈底斯带桑巴区早白垩世后碰撞花岗岩类的确定及构造意义[J].岩石矿物学杂志,2006,25(3):185-193.

    Google Scholar

    He Z H,Yang D M,Wang T W.The Determination of Carly Cretaceous Post-collision Granitoids in Sangba Area of Gangdese Tectonic Belt and Its Tectonic Significance[J].Acta Petrologica et Mineralogica,2006,25(3):185-193.

    Google Scholar

    [6] 高一鸣,陈毓川,唐菊兴,等.西藏工布江达县亚贵拉铅锌钼多金属矿床石英斑岩锆石SHRIMP定年及其地质意义[J].地质学报,2009,83(10):1436-1444.

    Google Scholar

    Gao Y M,Chen Y C,Tang J X,et al.SHRIMP U-Pb Dating of Zircon from Quartz Porphyry in the Yaguila Pb-Zn-Mo Deposit,Gongbujiangda County,Tibet and Its Geological Implication[J].Acta Geologica Sinica,2009,83(10):1436-1444.

    Google Scholar

    [7] 费光春,温春齐,王成松,等.西藏墨竹工卡县洞中拉铅锌矿床花岗斑岩锆石SHRIMP U-Pb定年[J].中国地质,2010,37(2):470-476.

    Google Scholar

    Fei G C,Wen C Q,Wang C S,et al.Zircon SHRIMP U-Pb Age of Porphyry Granite in the Dongzhongla Lead-Zinc Deposit,Maizhokunggar County,Tibet[J].Geology in China,2010,37(2):470-476.

    Google Scholar

    [8] 崔晓亮,唐菊兴,多吉,等.西藏洞中拉铅锌矿床石英斑岩锆石U-Pb年代学研究[J].成都理工大学学报(自然科学版),2011,38(5):557-562.

    Google Scholar

    Cui X L,Tang J X,Dorji,et al.Zircon U-Pb Age of the Quartz Porphyry from Dongzhongla Pb-Zn Deposit in Tibet,China[J].Journal of Chengdu University of Technology,2011,38(5):557-562.

    Google Scholar

    [9] 杜欣,刘俊涛,王亚平.西藏拉屋铅锌多金属矿床地质特征及成因分析[J].矿产与地质,2004,18(5):410-414.

    Google Scholar

    D Xin,Liu J T,Wang Y P.Geological Character and Ore Genesis of the Lawu Copper-Lead-Zinc Polymetallic Ore Deposit[J].Mineral Resources & Geology,2004,18(5):410-414.

    Google Scholar

    [10] 连永牢,曹新志,燕长海,等.西藏工布江达县亚贵拉铅锌矿床地质特征及成因分析[J].地质与勘探,2009,45(5):570-576.

    Google Scholar

    Lian Y L,Cao X Z,Yan C H,et al.Geological Characteristics and Genesis of Yaguila Lead-Zinc Deposit in the Gongbujiangda County of Tibet Province[J].Geology & Exploration,2009,45(5):570-576.

    Google Scholar

    [11] 连永牢,曹新志,燕长海,等.西藏当雄县拉屋铜铅锌多金属矿床喷流沉积成因[J].吉林大学学报(地球科学版),2010,40(5):1041-1046.

    Google Scholar

    Lian Y L,Cao X Z,Yan C H,et al.Exhalative Sedimentary Genesis of Lawu Copper-Lead-Zinc Deposit in Dangxiong County of Tibet[J].Journal of Jilin University (Earth Science Edition),2010,40(5):1041-1046.

    Google Scholar

    [12] 连永牢,曹新志,燕长海,等.西藏念青唐古拉地区铅锌银矿床成矿系列及找矿前景[J].贵州大学学报(自然科学版),2011,28(2):31-36.

    Google Scholar

    Lian Y L,Cao X Z,Yan C H,et al.Metallogenic Series and Prospecting Potential of Lead-Zinc-Silver Ore District in Nyainqentanglha,Tibet[J].Journal of Guizhou University (Natural Science Edition),2011,28(2):31-36.

    Google Scholar

    [13] 唐菊兴,王立强,郑文宝,等.冈底斯成矿带东段矿床成矿规律及找矿预测[J].地质学报,2014,88(12):2545-2555.

    Google Scholar

    Tang J X,Wang L Q,Zheng W B,et al.Ore Deposits Metallogenic Regularity and Prospecting in the Eastern Section of the Gangdese Metallogenic Belt[J].Acta Geologica Sinica,2014,88(12):2545-2555.

    Google Scholar

    [14] 顾枫华,章永梅,刘瑞萍,等.内蒙古沙德盖花岗岩岩浆混合作用:岩相学、矿物化学和年代学证据[J].岩石学报,2015,31(5):1374-1390.

    Google Scholar

    Gu F H,Zhang Y M,Liu R P,et al.Magma Mixing and Mingling of the Shadegai Granite in Inner Mongolia:Evidence from Petrography,Mineral Chemistry and Geochronology[J].Acta Petrologica Sinica,2015,31(5):1374-1390.

    Google Scholar

    [15] Liu Y S,Hu Z C,Zong K Q,et al.Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS[J].Chinese Science Bulletin,2010,55(15):1535-1546. doi: 10.1007/s11434-010-3052-4

    CrossRef Google Scholar

    [16] 吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.

    Google Scholar

    Wu Y B,Zheng Y F.Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age[J].Chinese Science Bulletin,2004,49(16):1589-1604.

    Google Scholar

    [17] Sun S S,McDonough W F.Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Process//Saundern A D,Norry M J(eds.).Magmatism in the Ocean Basins[J].Geological Society London Special Publication,1989,42(1):313-345. doi: 10.1144/GSL.SP.1989.042.01.19

    CrossRef Google Scholar

    [18] Belousova E A,Griffin W L,O'Reilly S Y,et al.Igneous Zircon:Trace Element Composition as an Indicator of Source Rock Type[J].Contributions to Mineralogy and Petrology,2002,143:602-622. doi: 10.1007/s00410-002-0364-7

    CrossRef Google Scholar

    [19] 钟玉芳,马昌前,佘振兵.锆石地球化学特征及地质应用研究综述[J].地质科技情报,2006,25(1):27-34.

    Google Scholar

    Zhong Y F,Ma C Q,She Z B.Geochemical Characteristics of Zircon and Its Applications in Geosciences[J].Geological Science & Technology Information,2006,25(1):27-34.

    Google Scholar

    [20] 赵振华.副矿物微量元素地球化学特征在成岩成矿作用研究中的应用[J].地学前缘,2010,17(1):267-286.

    Google Scholar

    Zhao Z H.Trace Element Geochemistry of Accessory Minerals and Its Applications in Petrogenesis and Metallogenesis[J].Earth Science Frontiers,2010,17(1):267-286.

    Google Scholar

    [21] Watson E B,Wark D A,Thomas J B.Crystallization Thermometers for Zircon and Rutile[J].Contributions to Mineralogy and Petrology,2006,151:413-433. doi: 10.1007/s00410-006-0068-5

    CrossRef Google Scholar

    [22] 高晓英,郑永飞.金红石Zr和锆石Ti含量地质温度计[J].岩石学报,2011,27(2):417-432.

    Google Scholar

    Gao X Y,Zheng Y F.On the Zr-in-Rutile and Ti-in-Zircon Geothermometers[J].Acta Petrologica Sinica,2011,27(2):417-432.

    Google Scholar

    [23] Ferry M,Watson E B.New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers[J].Contributions to Mineralogy and Petrology,2007,154(4):429-437. doi: 10.1007/s00410-007-0201-0

    CrossRef Google Scholar

    [24] Hayden L A,Watson E B.Rutile Saturation in Hydrous Siliceous Melts and Its Bearing on Ti-Thermometry of Quartz and Zircon[J].Earth Planetary Science Letters,2007,258(3-4):561-568. doi: 10.1016/j.epsl.2007.04.020

    CrossRef Google Scholar

    [25] Lee J,Williams I,Ellis D.Pb,U and Th Diffusion in Nature Zircon[J].Nature,1997,390:159-162. doi: 10.1038/36554

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(4)

Tables(2)

Article Metrics

Article views(1508) PDF downloads(28) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint