Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2016 Vol. 35, No. 6
Article Contents

Qin TIAN, Ling TONG, Shu-ling SONG, Nan ZHAN, Meng PAN, Jing QIU. Research Progress on the Selectivity and Biomagnification of Chiral Hexabromocyclododecanes Pollutants in Food Chain Transfer[J]. Rock and Mineral Analysis, 2016, 35(6): 569-578. doi: 10.15898/j.cnki.11-2131/td.2016.06.002
Citation: Qin TIAN, Ling TONG, Shu-ling SONG, Nan ZHAN, Meng PAN, Jing QIU. Research Progress on the Selectivity and Biomagnification of Chiral Hexabromocyclododecanes Pollutants in Food Chain Transfer[J]. Rock and Mineral Analysis, 2016, 35(6): 569-578. doi: 10.15898/j.cnki.11-2131/td.2016.06.002

Research Progress on the Selectivity and Biomagnification of Chiral Hexabromocyclododecanes Pollutants in Food Chain Transfer

  • Hexabromocyclododecanes (HBCDs) are globally produced brominated flame retardant (BFR) and are used primarily as an additive FR in thermal insulation building materials, upholstery textiles, and electronics. HBCDs not only pollute the ecological environment, but also harm the health of human beings through the food chain. The study on the environmental fate and biomagnification of HBCDs diastereomers and enantiomers in food chains is an important foundation for risk assessment and effective pollution control. The characteristics of HBCDs, the selective accumulation, biomagnification and transformation of HBCDs diastereomers and their enantiomers in food chain are reviewed in this paper. The influence factors of the selective accumulation and transformation were most likely ascribed to the combined effect of several aspects, including the living and feeding habits, trophic level of organisms, and the selective absorption, metabolism and bioisomerization of HBCDs. Recent research results indicate that the accumulation, transformation and biomagnifications behavior of HBCDs diastereomers and their enantiomers in the ecological system is not a single process, but the result of multiple factors of biological and environmental processes. Further studies will focus on the selective environmental behavior of HBCDs diastereomers and enantiomers in the freshwater and terrestrial food chains and the control influence factors of the selective environmental behavior during food chains transfer, which will provide a scientific basis for the assessment of environmental risks.
  • 加载中
  • [1] Son M H,Kim J K,Shin E S,et al. Diastereoisomer- and Species-specific Distribution of Hexabromocyclododecane (HBCD) in Fish and Marine Invertebrates[J].Journal of Hazard Materials,2015,300:114-120. doi: 10.1016/j.jhazmat.2015.06.023

    CrossRef Google Scholar

    [2] Law R J,Covaci A,Harrad S,et al.Levels and Trends of PBDEs and HBCDs in the Global Environment:Status at the End of 2012[J].Environment International,2014,65(2):147-158.

    Google Scholar

    [3] Vorkamp K,Bossi R,Rigét F F,et al.Novel Brominated Flame Retardants and Dechlorane Plus in Greenland Air and Biota[J].Environmental Pollution,2015,196:284-291. doi: 10.1016/j.envpol.2014.10.007

    CrossRef Google Scholar

    [4] Zeng Y H,Luo X J,Zheng X,et al.Species-specific Bioaccumulation of Halogenated Organic Pollutants and Their Metabolites in Fish Serum from an E-waste Site,South China[J].Archives of Environmental Contamination & Toxicology,2014,67(3):348-357.

    Google Scholar

    [5] 罗孝俊,吴江平,陈社军,等.多溴联苯醚、六溴环十二烷和得克隆的生物差异性富集及其机理研究进展[J].中国科学(化学),2013,43:291-304. doi: 10.1360/032013-9

    CrossRef Google Scholar

    Luo X J,Wu J P,Chen S J,et al.Species-specific Bioaccumulation of Polybrominated Diphenyl Ethers,Hexabromocyclododecane and Dechlorane Plus in Biota:A Review[J].Scientia Sinica Chimica,2013,43(3):291-304. doi: 10.1360/032013-9

    CrossRef Google Scholar

    [6] Abbasi N A,Malik R N,Frantz A,et al.A Review on Current Knowledge and Future Prospects of Organohalogen Contaminants (OHCs) in Asian Birds[J].Science of the Total Environment,2016,542(Part A):411-426.

    Google Scholar

    [7] Yu G,Bu Q,Cao Z,et al.Brominated Flame Retardants (BFRs):A Review on Environmental Contamination in China[J].Chemosphere,2016,150:479-490. doi: 10.1016/j.chemosphere.2015.12.034

    CrossRef Google Scholar

    [8] Koch C,Schmidt-Kötters T,Rupp R,et al.Review of Hexabromo-cyclododecane (HBCD) with a Focus on Legislation and Recent Publications Concerning Toxicokinetics and Dynamics[J]. Environmental Pollution,2015,199:26-34. doi: 10.1016/j.envpol.2015.01.011

    CrossRef Google Scholar

    [9] 张艳伟.六溴环十二烷异构体及其对映体的环境分布与生物富集[D].天津:南开大学,2014.http://cdmd.cnki.com.cn/Article/CDMD-10055-1015528868.htm

    Google Scholar

    Zhang Y W.Environmental Distribution and Bioaccumulation of Hexabromoclododecane Diastereomers and Enantiomers[D].Tianjin:Nankai University,2014.

    Google Scholar

    [10] Hendriks H S,Westerink R H S.Neurotoxicity and Risk Assessment of Brominated and Alternative Flame Retardants[J].Neurotoxicology and Teratology,2015,52(Part B):248-269.

    Google Scholar

    [11] Millera I,Serchib T,Cambierb S,et al.Hexabromocyclo-dodecane (HBCD) Induced Changes in the Liver Proteome of Eu- and Hypothyroid Female Rats[J].Toxicology Letters,2016,245:40-51. doi: 10.1016/j.toxlet.2016.01.002

    CrossRef Google Scholar

    [12] Kim U J,Oh J E.Tetrabromobisphenol A and Hexabromocyclododecane Flame Retardants in Infant-Mother Paired Serum Samples, and Their Relationships with Thyroid Hormones and Environmental Factors[J].Environmental Polluttion,2014,184(1):193-200.

    Google Scholar

    [13] Rawn D F K,Gaertner D W,Weber D,et al.Hexabromo-cyclododecane Concentrations in Canadian Human Fetal Liver and Placental Tissues[J].Science of the Total Environment,2014,468-469C:622-629.

    Google Scholar

    [14] Barontini F,Cozzani V,Petarca L.Thermal Stability and Decomposition Products of Hexabromocyclododecane[J].Industrial & Engineering Chemistry Research,2003,40(15):3270-3280.

    Google Scholar

    [15] Hunziker R W,Gonsior S,McGergor J A,et al.Fate and Effect of Hexabromocyclododecane in the Environment[J].Organohalogen Compounds,2004,66:2300-2305.

    Google Scholar

    [16] Wu T,Wang S,Huang H,et al.Diastereomer-specific Uptake,Translocation,and Toxicity of Hexabromocyclo-dodecane Diastereoisomers to Maize[J].Journal of Agricultural & Food Chemistry,2012,60(34):8528-8534.

    Google Scholar

    [17] Du M,Zhang D,Yan C,et al.Developmental Toxicity Evaluation of Three Hexabromocyclododecane Diastereoisomers on Zebrafish Embryos[J].Aquatic Toxicology,2012,112-113(2):1-10.

    Google Scholar

    [18] Zhang X,Yang F,Xu C,et al.Cytotoxicity Evaluation of Three Pairs of Hexabromocyclododecane (HBCD) Enantiomers on HepG2 Cell[J].Toxicology in Vitro:An International Journal Published in Association with Bivra,2008,22(6):1520-1527. doi: 10.1016/j.tiv.2008.05.006

    CrossRef Google Scholar

    [19] Covaci A,Gerecke A C,Law R J,et al.Hexabromocy-clododecanes (HBCDs) in the Environment and Humans:A Review[J].Environmental Science & Technology,2006,40(12):3679-3688.

    Google Scholar

    [20] Tomy G T,Pleskach K,Oswald T,et al.Enantioselective Bioaccumulation of Hexabromocyclododecane and Congener-specific Accumulation of Brominated Diphenyl Ethers in an Eastern Canadian Arctic Marine Food Web[J].Environmental Science & Technology,2008,42(10):3634-3639.

    Google Scholar

    [21] Wu J P,Guan Y T,Zhang Y,et al.Trophodynamics of Hexabromocyclododecanes and Several Other Non-PBDE Brominated Flame Retardants in a Freshwater Food Web[J].Environmental Science & Technology,2010,44(14):5490-5495.

    Google Scholar

    [22] Brandsma S H,Leonards P E G,Leslie H A,et al.Tracing Organophosphorus and Brominated Flame Retardants and Plasticizers in an Estuarine Food Web[J].Science of the Total Environment,2015,505:22-31. doi: 10.1016/j.scitotenv.2014.08.072

    CrossRef Google Scholar

    [23] Morris S,Allchin C R,Zegers B N,et al.Distribution and Fate of HBCD and TBBPA Brominated Flame Retardants in North Sea Estuaries and Aquatic Food Webs[J].Environmental Science & Technology,2004,38(21):5497-5504.

    Google Scholar

    [24] Zhang Y,Sun H,Liu F,et al.Hexabromocyclododecanes in Limnic and Marine Organisms and Terrestrial Plants from Tianjin,China:Diastereomer- and Enantiomer-specific Profiles,Biomagnification,and Human Exposure[J].Chemosphere,2013,93(8):1561-1568. doi: 10.1016/j.chemosphere.2013.08.004

    CrossRef Google Scholar

    [25] Law K,Halldorson T,Danell R,et al.Bioaccumulation and Trophic Transfer of Some Brominated Flame Retardants in a Lake Winnipeg (Canada) Food Web[J].Environmental Toxicology & Chemistry,2006,25(8):2177-2186.

    Google Scholar

    [26] Tomy G T,Budakowsti W,Halldorson T,et al.Biomagnification of α- and γ-Hexabromacyclododecane Isomers in a Lake Ontario Food Web[J].Environmental Science & Technology,2004,38(8):2298-2303.

    Google Scholar

    [27] Yu L,Luo X,Zheng X,et al.Occurrence and Biomagnification of Organohalogen Pollutants in Two Terrestrial Predatory Food Chains[J].Chemosphere,2013,93:506-511. doi: 10.1016/j.chemosphere.2013.06.023

    CrossRef Google Scholar

    [28] Sørmo E G,Salmer M P,Jenssen B M,et al.Biomagni-fication of Polybrominated Diphenyl Ether and Hexabromocyclododecane Flame Retardants in the Polar Bear Food Chain in Svalbard,Norway[J].Environmental Toxicology & Chemistry,2006,25:2502-2511.

    Google Scholar

    [29] Tomy G T,Pleskach K,Ferguson S H,et al.Trophody-namics of Some PFCs and BFRs in a Western Canadian Arctic Marine Food Web[J].Environmental Science & Technology,2009,43(11):4076-4081.

    Google Scholar

    [30] Conder J M,Gobas F A P C,Borg K,et al.Use of Trophic Magnification Factors and Related Measures to Characterize Bioaccumulation Potential of Chemicals[J].Integrated Environmental Assessment and Management,2012,8(1):85-97. doi: 10.1002/ieam.216

    CrossRef Google Scholar

    [31] Haukas M,Hylland K,Nygard T,et al.Diastereomer-specific Bioaccumulation of Hexabromocyclododecane (HBCD) in a Coastal Food Web,Western Norway[J].Science of the Total Environment,2010,408(23):5910-5916. doi: 10.1016/j.scitotenv.2010.08.026

    CrossRef Google Scholar

    [32] Poma G,Volta P,Roscioli C,et al.Concentrations and Trophic Interactions of Novel Brominated Flame Retardants,HBCD,and PBDEs in Zooplankton and Fish from Lake Maggiore (Northern Italy)[J].Science of the Total Environment,2014,481:401-408. doi: 10.1016/j.scitotenv.2014.02.063

    CrossRef Google Scholar

    [33] Zegers B N,Mets A,van Bommel R,et al.Levels of Hexabromocyclododecanein Harbor Porpoises and Common Dolphins from Western European Seas,with Evidence for Stereoisomer-specific Biotransformation by Cytochrome P450[J].Environmental Science & Technology,2005,39(7):2095-2100.

    Google Scholar

    [34] Law K,Palace V P,Halldorson T H J,et al.Dietary Accumulation of Hexabromocyclododecane Diastereomers in Juvenile Rainbow Rout (Oncorhynchusmykiss).Ⅰ:Bioaccumulation Parameters and Evidence of Bioisomerization[J].Environmental Toxicology & Chemistry,2006,25(7):1757-1761.

    Google Scholar

    [35] Du M,Lin L,Yan C,et al.Diastereoisomer- and Enantiomer-specific Accumulation,Depuration,and Bioisomerization of Hexabromocyclododecanes in Zebrafish (Danio rerio)[J].Environmental Science & Technology,2012,46(20):11040-11046.

    Google Scholar

    [36] Li B,Yao T,Sun H,et al.Diastereomer- and Enantio-mer-specific Accumulation, Depuration, Bioisomerization, and Metabolism of Hexabromocyclo-dodecanes (HBCDs) in Two Ecologically Different Species of Earthworms[J].Science of the Total Environment,2016,542(Part A):427-434.

    Google Scholar

    [37] Luo X J,Ruan W,Zeng Y H,et al.Trophic Dynamics of Hexabromocyclododecane Diastereomers and Enantiomers in Fish in a Laboratory Feeding Study[J].Environmental Toxicology & Chemistry,2013,32(11):2565-2570.

    Google Scholar

    [38] Li Y,Zhou Q,Wang Y,et al.Fate of Tetrabromo-bisphenol A and Hexabromocyclododecane Brominated Flame Retardants in Soil and Uptake by Plants[J].Chemosphere,2011,82(2):204-209. doi: 10.1016/j.chemosphere.2010.10.021

    CrossRef Google Scholar

    [39] 焦杏春,路国慧,王晓春,等.环境中溴系阻燃剂六溴环十二烷的水平及分析进展[J].岩矿测试,2012,31(2):210-217.

    Google Scholar

    Jiao X C,Lu G H,Wang X C,et al.The Levels and Analytical Developments of Brominated Flame Retardant Hexabromocyclodocanes from Various Environmental Media[J].Rock and Mineral Analysis,2012,31(2):210-217.

    Google Scholar

    [40] He M,Luo X,Yu L,et al.Tetrabromobisphenol-A and Hexabromocyclododecane in Birds from an E-waste Region in South China:Influence of Diet on Diastereoisomer- and Enantiomer-specific Distribution and Trophodynamics[J].Environmental Science & Technology,2010,44(15):5748-5754.

    Google Scholar

    [41] Sun Y,Luo X,Mo L,et al.Hexabromocyclododecane in Terrestrial Passerine Birds from E-waste,Urban and Rural Locations in the Pearl River Delta, South China:Levels,Biomagnification,Diastereoisomer- and Enantiomer-specific Accumulation[J].Environmental Pollution,2012,171(4):191-198.

    Google Scholar

    [42] Janák K,Covaci A,Voorspoels S,et al.Hexabromocyclo-dodecane in Marine Species from the Western Scheldt Estuary:Diastereoisomer- and Enantiomer-specific Accumulation[J].Environmental Science & Technology,2005,39(7):1987-1994.

    Google Scholar

    [43] Esslinger S,Becker R,Maul R,et al.Hexabromocyclo-dodecane Enantiomers:Microsomal Degradation and Patterns of Hydroxylated Metabolites[J].Environmental Science & Technology,2011,45(9):3938-3944.

    Google Scholar

    [44] Zhang Y,Sun H,Ruan Y.Enantiomer-specific Accumu-lation,Depuration,Metabolizationand Isomerization of Hexabromocyclododecane (HBCD) Diastereomers in Mirror Carp from Water[J].Journal of Hazardous Materials,2014:264(10):8-15.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Article Metrics

Article views(1840) PDF downloads(29) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint