Professional Committee of Rock and Mineral Testing Technology of the Geological Society of China, National Geological Experiment and Testing CenterHost
2016 Vol. 35, No. 3
Article Contents

Ran JIANG, Yong FU, Fu-liang WANG, Hao-xiang PEI, Zhi-gang XU, Hong-li WEN, Wen-xi ZHOU. Application of the Removing Carbonate Method to Study the Origin of Silica in ‘Bainitangceng’ of Yunnan-Guizhou Area[J]. Rock and Mineral Analysis, 2016, 35(3): 236-244. doi: 10.15898/j.cnki.11-2131/td.2016.03.004
Citation: Ran JIANG, Yong FU, Fu-liang WANG, Hao-xiang PEI, Zhi-gang XU, Hong-li WEN, Wen-xi ZHOU. Application of the Removing Carbonate Method to Study the Origin of Silica in ‘Bainitangceng’ of Yunnan-Guizhou Area[J]. Rock and Mineral Analysis, 2016, 35(3): 236-244. doi: 10.15898/j.cnki.11-2131/td.2016.03.004

Application of the Removing Carbonate Method to Study the Origin of Silica in ‘Bainitangceng’ of Yunnan-Guizhou Area

More Information
  • Bainitangceng in the Yunnan and Guizhou area has a close relationship with manganese deposits. Previous geochemical studies focused on the whole rock of siliceous limestones rather than siliceous components. The question of whether or not whole rocks can really reflect the source of siliceous components needs further study. In this study, Bainitangceng' siliceous limestone in Yunnan and Guizhou area was selected and HCl was used to remove the carbonate minerals in siliceous limestone to acquire simple composition siliceous components. Trace elements in siliceous components were determined by ICP-MS/OES. The origin of siliceous components is discussed by comparing the trace elemental composition of the whole rock of siliceous limestone and siliceous components after removing carbonate. Results show that Th/U ratios (0.02-0.05) in siliceous components are lower than those (0.08-0.2) of the whole rock of siliceous limestone. Siliceous components after removing the carbonate minerals have Eu/Eu* values of 0.86 to 1.54 with positive Eu anomaly, different from Eu/Eu* values (0.87-0.93) of the whole rock of siliceous limestone with negative Eu anomaly. Both whole rock of siliceous limestone and siliceous components are characterized by enriching the light rare earth elements, but the proportion of light rare earth elements in siliceous components is larger than that in whole rock. The above characteristics indicate that the siliceous component of ‘Bainitangceng’ may have been derived from hydrothermal fluid, which is important for explaining the formation of Permian manganese deposits.
  • 加载中
  • [1] 贵州省地质矿产局编著.贵州省区域地质志[M].北京:地质出版社,1987:558-560.

    Google Scholar

    Bureau of Geology and Mineral Resources of Guizhou Province.Regional Geology of Guizhou Province[M].Beijing:Geological Publishing House,1987:558-560.

    Google Scholar

    [2] 刘巽锋,王庆生,高兴基等编著.贵州锰矿地质[M].贵阳:贵州人民出版社,1989:7-56.

    Google Scholar

    Liu X F,Wang Q S,Gao X J,et al.Manganese Deposits of Guizhou[M].Guiyang:Guizhou People's Publishing House,1989:7-56.

    Google Scholar

    [3] 陶平,杜昌乾,马荣,等.贵州及邻区二叠系锰矿地质特征及成矿作用探讨[J].贵州地质, 2005,22(2):102-108.

    Google Scholar

    Tao P,Du C Q,Ma R,et al.The Research on Geologic Feature and Metallogenesis of the Permian Manganese Ore Deposits in Guizhou and the Vicinages[J].Guizhou Geology,2005,22(2):102-108.

    Google Scholar

    [4] 林贵生,李赟.遵义锰矿地质特征及找矿潜力分析[J].中国锰业,2006,24(3):26-30.

    Google Scholar

    Lin G S,Li Y.Geological Characteristics and Prospectives of Zunyi Manganese Ores[J].China's Manganese Industry,2006,24(3):26-30.

    Google Scholar

    [5] 刘平,廖友常,殷科华,等.与火山活动有关的热水沉积锰矿——以贵州二叠纪锰矿为例[J].中国地质,2008,35(5):992-1006.

    Google Scholar

    Liu P,Liao Y C,Yin K H,et al.Hydrothermal Sedimentary Deposits Associated to Volcanic Activities-Permian Manganese Deposit in Guizhou[J].Geology in China,2008,35(5):992-1006.

    Google Scholar

    [6] 铁永洪,刘志臣,张远国,等.遵义锰矿地质特征及富集规律[J].矿业工程研究,2013,28(3):63-67.

    Google Scholar

    Tie Y H,Liu Z C,Zhang Y G,et al.Geological Characteristics and Enrichment Regularity of Zunyi Manganese Ore[J].Mineral Engineering Research,2013,28(3):63-67.

    Google Scholar

    [7] 刘志臣,张远国,陈登,等.贵州遵义锰矿区"白泥塘层"硅质岩地球化学特征及其地质意义[J].矿物学报,2013,33(4):665-670.

    Google Scholar

    Liu Z C,Zhang Y G,Chen D,et al.Geochemical Characteristics and Geological Significance of ‘Bainitangceng’ Siliceous Rocks in Zunyi Manganese Ore Fields,Guizhou Province,China[J].Acta Mieralogica Sinica,2013,33(4):665-670.

    Google Scholar

    [8] 杜小全.黔北二叠纪锰矿成矿条件与找矿方向[J].矿产勘查,2011,2(3):249-253.

    Google Scholar

    Du X Q.Metallogenic Conditions and Prospecting Direction for Permian Manganess Deposit in Northern Guizhou[J].Mineral Exploration,2011,2(3):249-253.

    Google Scholar

    [9] 皮道会,刘丛强,邓海琳,等.贵州遵义牛蹄塘组黑色岩系有机质的稀土元素地球化学研究[J].矿物学报,2008,28(3):303-310.

    Google Scholar

    Pi D H,Liu C Q,Deng H L,et al.REE Geochemistry of Organic Matter from Black Shales of the Niutitang Formation,Zunyi,Guizhou Province[J].Acta Mineralogica Sinica,2008,28(3):303-310.

    Google Scholar

    [10] 裴浩翔,付勇,徐志刚,等.贵州道坨锰矿菱锰矿的稀土元素特征[J].沉积与特提斯地质,2015,35(1):76-85.

    Google Scholar

    Pei H X,Fu Y,Xu Z G,et al.REE Characteristics of Rhodochrosite from the Daotuo Manganese Deposit in Guizhou[J].Sedimentary Geology and Tethyan Geology,2015,35(1):76-85.

    Google Scholar

    [11] 姚旭,周瑶琪,李素,等.硅质岩与二叠纪硅质沉积事件研究现状及进展[J].地球科学进展,2013,28(11):1189-1200.

    Google Scholar

    Yao X,Zhou Y Q,Li S,et al.Research Status and Advances in Chert and Permian Chert Event[J].Advances in Earth Science,2013,28(11):1189-1200.

    Google Scholar

    [12] Tribovillard N,Algeo T J,Lyons T,et al.Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update[J].Chemical Geology,2006,232(1):12-32.

    Google Scholar

    [13] Dypvik H.Geochemical Compositions and Depositional Conditions of Upper Jurassic and Lower Cretaceous Yorkshire Clays[J].England Geology,1984,121(5):489-504.

    Google Scholar

    [14] Dill H.Metallogenesis of Early Palaeozoic Graptolite Shales from the Graefenthal Horst (Northern Bavaria-Federal Republic of Germany)[J].Economic Geology,1986,81:889-903.

    Google Scholar

    [15] Liu K,Yang R D,Chen W Y,et al.Trace Element and REE Geochemistry of the Zhewang Gold Deposit,Southeastern Guizhou Province,China[J].Chinese Journal of Geochemistry,2014,33:109-118.

    Google Scholar

    [16] Morford J L.Diagenesis of Oxyanions (V,U,Re,and Mo) in Pore Waters and Sediments from a Continental Margin[J].Geochimica et Cosmochimica Acta,2005,69(21):5021-5032.

    Google Scholar

    [17] Kimura H,Watanabe Y.Oceanic Anoxia at the Precam-brian-Cambrian Boundary[J].Geology,2001,29(11):995-998.

    Google Scholar

    [18] Wignall P B,Twitchett R J.Oceanic Anoxia and the End Permian Mass Extinction[J].Science,1996,272(5265):1155-1158.

    Google Scholar

    [19] Rona P A.Criteria for Recognition of Hydrothermal Mineral Deposits in Ocean Crust[J].Economic Geology,1987,73:135-160.

    Google Scholar

    [20] Owen A,Armstrong A H,Floyd D J.Rare Earth Element Geochemistry of Upper Ordovician Cherts from the Southern Uplands of Scotland[J].Journal of the Geological Society,1999,156(1):191-204.

    Google Scholar

    [21] Chen D Z,Qing H R,Yan X,et al.Hydrothermal Venting and Basin Evolution (Devonian,South China):Constraints from Rare Earth Element Geochemistry of Chert[J].Sedimentary Geology,2006,183(3-4):203-216.

    Google Scholar

    [22] Wang J G,Chen D Z,Wang D,et al.Petrology and Geochemistry of Chert on the Marginal Zone of Yangtze Platform,Western Hunan,South China,during the Ediacaran-Cambrian Transition[J].Sedimentary Geology,2012,59(3):809-829.

    Google Scholar

    [23] Nozaki Y,Zhang J, Amakawa H,et al.The Fractionation between Y and Ho in the Marine Environment[J].Earth and Planetary Science Letters,1997,148(1-2):329-340.

    Google Scholar

    [24] Dieudonne C I I, Cheo E H, Ghogomu R T.Textures and Rare Earth Elements Composition of Banded Iron Formations at Njweng Prospect,Mbalam Iron Ore District,Southern Cameroon[J].International Journal of Geosciences,2013,4:146-165.

    Google Scholar

    [25] Lawrence M G,Kamber B S.The Behaviour of the Rare Earth Elements during Estuarine Mixing-revisited[J].Marine Chemistry,2006,100(1):147-161.

    Google Scholar

    [26] Chen L,Lin A T S,Da X J,et al.Sea-level Changes Recorded by Cerium Anomalies in the Late Jurassic (Tithonian) Black Rock Series of Qiangtang Basin,North-Central Tibe[J].Oil Shale,2012,29(1):18-35.

    Google Scholar

    [27] German C R,Elderfield H.Application of the Ce Anomaly as a Paleoredox Indicator:The Ground Rules[J].Paleoceanography,1990,5(5):823-833.

    Google Scholar

    [28] Kamber B S,Webb G E.The Geochemistry of Late Archaean Microbial Carbonate:Implications for Ocean Chemistry and Continental Erosion History[J].Geochimica et Cosmochimica Acta,2001,65(15):2509-2525.

    Google Scholar

    [29] Bolhar R,Van Kranendonk M J.A Non-marine Deposi-tional Setting for the Northern Fortescue Group,Pilbara Craton,Inferred from Trace Element Geochemistry of Stromatolitic Carbonates[J]. Precambrian Research,2007,155(3-4):229-250.

    Google Scholar

    [30] Jeans C V,Wray D S,Williams C T,et al.Redox Conditions in the Late Cretaceous Chalk Sea:The Possible Use of Cerium Anomalies as Palaeoredox Indicators in the Cenomanian and Turonian Chalk of England[J].Acta Geologica Polonica,2015,65(3):345-366.

    Google Scholar

    [31] Murray R W,Brink M R B,Jones D L,et al.Rare Earth Elements as Indicators of Different Marine Depositional Environment in Chert and Shale[J].Geology,1990,18(3):268-271.

    Google Scholar

    [32] Dulski P.Interferences of Oxide,Hydroxide and Chloride Analyte Species in the Determination of Rare Earth Elements in Geological Samples by Inductively Coupled Plasma-Mass Spectrometry[J].Fresenius' Journal of Analytical Chemistry,1994,350(4):194-203.

    Google Scholar

    [33] Anja G,Dirk M,Georg B.Origin of Middle Rare Earth Element Enrichment in Acid Mine Drainage-impacted Areas[J].Environmental Science and Pollution Research,2014,21:6812-6823.

    Google Scholar

    [34] Dubinin A.Geochemistry of Rare Earth Elements in the Ocean[J].Lithology and Mineral Resources,2004,39(4):289-307.

    Google Scholar

    [35] German R C,Higgs C N,Thomson J.A Geochemical Study of Metalliferous Sediment from the TAG Hydrothermal Mound,2608'N,Mid-Atlantic Ridge[J].Journal of Geophysical Research,1993,98(B6):9683-9692.

    Google Scholar

    [36] Laurila T E,Hannington M D,Petersen S,et al.Early Depositional History of Metalliferous Sediments in the Atlantis Ⅱ Deep of the Red Sea:Evidence from Rare Earth Element Geochemistry[J].Geochimica et Cosmochimica Acta,2014,126:146-168.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(3)

Tables(1)

Article Metrics

Article views(1188) PDF downloads(82) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint