Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 6
Article Contents

WANG Jing, WANG Bo, CAO Jinnan, XIAO Xiao, ZHAO Di, CHEN Zhenya. Preparation of Potassium−Silicon Soil Conditioner from Ultrafine Molybdenum Tailings by Alkali Activation−Hydrothermal Method[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 88-96. doi: 10.13779/j.cnki.issn1001-0076.2024.08.023
Citation: WANG Jing, WANG Bo, CAO Jinnan, XIAO Xiao, ZHAO Di, CHEN Zhenya. Preparation of Potassium−Silicon Soil Conditioner from Ultrafine Molybdenum Tailings by Alkali Activation−Hydrothermal Method[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 88-96. doi: 10.13779/j.cnki.issn1001-0076.2024.08.023

Preparation of Potassium−Silicon Soil Conditioner from Ultrafine Molybdenum Tailings by Alkali Activation−Hydrothermal Method

  • In response to the challenges of high difficulty and low comprehensive utilization rate when conventionally using ultrafine molybdenum tailings for the preparation of building materials, a technical approach combining alkali activation and hydrothermal method to prepare soil conditioners has been proposed. Molybdenum tailings are used as the main raw material, with quicklime, KOH, and others as activators to prepare soil conditioners under hydrothermal conditions. The study investigated the impact of factors such as the mass concentration of KOH, the mass ratio of tailings to lime, the mass ratio of straw to tailings, the mass−volume ratio of mixed dry materials to alkaline solution, hydrothermal reaction time, and hydrothermal reaction temperature on the production of soluble Si and K elements. The results showed that under the conditions of KOH concentration of 0.5 mol/L, mass ratio of tailings to lime of 1∶0.8, mass ratio of straw to tailings of 1 : 70, mass−volume ratio of mixed dry materials to alkaline solution of 100 g∶300 mL, hydrothermal reaction time of 9 hours, and hydrothermal reaction temperature of 180 ℃, the prepared soil conditioner had soluble Si and K contents of 8.9% and 6.85%, respectively, meeting the requirements for Si and K elements in "Silicon−Calcium−Potassium−Magnesium Fertilizer" (GB/T 36207—2018). Under the combined action of alkali activation and hydrothermal method, the silicate minerals in the tailings undergo depolymerization and condensation reactions, activating the reactivity of elements such as Si, K, and Al. The prepared soil conditioner samples meet the national standard requirements for soluble Si and K elements; they form a network structure with strong adsorption capacity. This research result will be of great significance for the comprehensive utilization of molybdenum tailings in China, and for the sustainable development of agricultural production.

  • 加载中
  • [1] 李文智, 付治国, 郭锐, 等. 中国超大型钼矿床[J]. 矿产与地质, 2014, 28(1): 9−11+24.

    Google Scholar

    LI W Z, FU Z G, GUO R, et al. Super scale molybdenum deposits in china[J]. Mineral Resources and Geology, 2014, 28(1): 9−11+24.

    Google Scholar

    [2] 胡卜亮, 王快社, 胡平, 等. 钼尾矿资源回收综合利用研究进展[J]. 材料导报, 2015, 29(19): 123−127+134.

    Google Scholar

    HU B L, WANG K S, HU P, et al. Research progress of molybdenum tailings resourses recycling and utilization[J]. Materials Review, 2015, 29(19): 123−127+134.

    Google Scholar

    [3] 胡贵生, 章超, 钱晨阳, 等. 钼尾矿资源综合利用最新研究进展概述[J]. 材料导报, 2019, 33(z2): 233−238.

    Google Scholar

    HU G S, ZHANG C, QIAN C Y, et al. Recent research progress of comprehensive utilization of molybdenum tailings resources[J]. Materials Review, 2019, 33(z2): 233−238.

    Google Scholar

    [4] 甘润波, 甘志宏. 吉林大黑山钼矿废弃尾矿坝区域生态恢复探讨[J]. 吉林水利, 2011(7): 50−52. doi: 10.3969/j.issn.1009-2846.2011.07.017

    CrossRef Google Scholar

    GAN R B, GAN Z H. Discussion on regional ecological restoration of abandoned tailing dam of molybdenum mine in Dahei Mountain, Jilin province[J]. Jilin Water Conservancy, 2011(7): 50−52. doi: 10.3969/j.issn.1009-2846.2011.07.017

    CrossRef Google Scholar

    [5] Guo J H, Liu X J, Zhang Y, et al. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008−1010.

    Google Scholar

    [6] 徐仁扣, 李九玉, 周世伟, 等. 我国农田土壤酸化调控的科学问题与技术措施[J]. 中国科学院院刊, 2018, 33(2): 160−167.

    Google Scholar

    XU R K, LI J Y, ZHOU S W, et al. Scientific issues and controlling strategies of soil acidification of croplands in China[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 160−167.

    Google Scholar

    [7] 全国肥料和土壤调理剂标准化技术委员会. 肥料和土壤调理剂 术语: GB/T6274−2016[S]. 北京: 中国标准出版社, 2016: 3.

    Google Scholar

    National Technical Committee for Standardization of Fertilizers and Soil Conditioners. Fertilizers and soil conditioners terminology: GB/T6274−2016[S]. Beijing: China Standard Press, 2016: 3.

    Google Scholar

    [8] 孙蓟锋, 王旭. 土壤调理剂的研究和应用进展[J]. 中国土壤与肥料, 2013(1): 1−7.

    Google Scholar

    SUN J F, WANG X. Advance in research and application of soil conditioner[J]. China Soil and Fertilizer, 2013(1): 1−7.

    Google Scholar

    [9] 易龙生, 夏晋, 米宏成, 等. 尾矿活化方法的研究进展综述[J]. 矿业科学报, 2022, 7(5): 529−537.

    Google Scholar

    YI L S, XIA J, MI H C, et al. A review on the research progress of tailings activation methods[J]. Journal of Mining Science and Technology, 2022, 7(5): 529−537.

    Google Scholar

    [10] 易龙生, 温建. 钢渣活性激发技术的研究现状和进展[J]. 硅酸盐通报, 2013, 32(10): 2057−2062.

    Google Scholar

    YI L S, WEN J. Research status and progress on the steel slag activity excitation technology[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(10): 2057−2062.

    Google Scholar

    [11] 吴秋生, 梁世栋, 李小燕, 等. 钾长石高温分解制备硅钙钾镁肥工艺优化研究[J]. 非金属矿, 2019, 42(5): 24−27. doi: 10.3969/j.issn.1000-8098.2019.05.007

    CrossRef Google Scholar

    WU Q S, LIANG S D, LI X Y, et al. Study on preparation technology process optimization of silicon−calcium−potassium−magnesium fertilizer made by decomposition of potassium feldspar[J]. Non−Metallic Mines, 2019, 42(5): 24−27. doi: 10.3969/j.issn.1000-8098.2019.05.007

    CrossRef Google Scholar

    [12] 李小燕, 俞为民, 朱金波, 等. 硅钙钾肥生产新工艺[J]. 磷肥与复肥, 2015, 30(10): 18−20. doi: 10.3969/j.issn.1007-6220.2015.10.008

    CrossRef Google Scholar

    LI X Y, YU W M, ZHU J B, et al. A new process for production of Si−Ca−K fertilizer[J]. Phosphorus and Compound Fertilizer, 2015, 30(10): 18−20. doi: 10.3969/j.issn.1007-6220.2015.10.008

    CrossRef Google Scholar

    [13] 韩成. 一种从富钾岩石−石灰水热法制取钾肥的方法: ZL 01100474.6[P]. 2005−06−22.

    Google Scholar

    HAN C. A method of potassium fertilizer extraction from potassium−rich rock−lime hydrothermal method: ZL 01100474. 6[P]. 2005−06−22.

    Google Scholar

    [14] MU J, HU Z, HUANG L, et al. Preparation of a silicon−iron amendment from acid−extracted copper tailings for remediating multi−metal−contaminated soils[J]. Environmental Pollution, 2020, 257: 113565.

    Google Scholar

    [15] 毛益林, 杨进忠, 刘小府. 攀西地区某典型铜矿尾矿资源化技术研究[J]. 矿产综合利用, 2022(6): 84−88. doi: 10.3969/j.issn.1000-6532.2022.06.015

    CrossRef Google Scholar

    MAO Y L, YANG J Z, LIU X F. Study on resource utilization technology of typical copper tailings from Panxi Region[J]. Multipurpose Utilization of Mineral Resources, 2022(6): 84−88. doi: 10.3969/j.issn.1000-6532.2022.06.015

    CrossRef Google Scholar

    [16] 孙希乐, 安卫东, 张韬, 等. 利用铁尾矿和副产品云母粉、白云石制备土壤调理剂试验研究[J]. 金属矿山, 2018(6): 192−196.

    Google Scholar

    SUN X L, AN W D, ZHANG T, et al. Experimental study onpreparation of soil conditionerfrom iron tailings and by−products micapowder and dolomite[J]. Metal Mine, 2018(6): 192−196.

    Google Scholar

    [17] 董盈. 钼尾矿综合利用与钼选矿回收率的提高[J]. 中国钼业, 2013, 37(5): 15−18.

    Google Scholar

    DONG Y. Comprehensive utilization of molybdenum tailings and increase of molybdenum dressing recovery[J]. China Molybdenum Industry, 2013, 37(5): 15−18.

    Google Scholar

    [18] 李竟先, 吴基球, 鄢程. 纳米颗粒的水热法制备[J]. 中国陶瓷, 2002(5): 36−39+3.

    Google Scholar

    LI J X, WU J Q, YAN C. Hydrothermal preparation of nanoparticle[J]. China Ceramics, 2002(5): 36−39+3.

    Google Scholar

    [19] 李娜. 地聚物基泡沫材料的制备及其性能研究[D]. 济南: 济南大学, 2015.

    Google Scholar

    LI N. Study on preparation and properties of geopolymer foam materials[D]. Ji’nan: University of Jinan, 2015.

    Google Scholar

    [20] 饶峰, 吴洁, 印万忠, 缪彦. 利用碱激发地质聚合反应固化尾矿研究进展[J]. 矿产保护与利用, 2019, 39(4): 53−59.

    Google Scholar

    RAO F, WU J, YIN WZ, MIAO Y. Research progress on solidification of tailings by alkali−activated geopolymerization[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 53−59.

    Google Scholar

    [21] GUO B, PAN D, LIU B, et al. Immobilization mechanism of Pb in fly ash−based geopolymer[J]. Construction and Building Materials, 2017, 134: 123−130.

    Google Scholar

    [22] KIVENTERÄ J, PERUMAL P, YLINIEMI J, et al. Mine tailings as a raw material in alkali activation: A review[J]. International Journal of Minerals, Metallurgy and Materials, 2020, 27, 1009−1020.

    Google Scholar

    [23] 赵淑芳, 王浩明, 高玉倩, 等. 开发含高硅铁尾矿硅肥试验研究初探[J]. 矿产综合利用, 2018(5): 126−130.

    Google Scholar

    ZHAO S F, WANG H M, GAO Y Q, et al. Preliminary study on thedevelopment of silicon fertilizer in tailings containing high siliconiron[J]. Comprehensive Utilization of Mineral Resources, 2018(5): 126−130.

    Google Scholar

    [24] 尹琛, 白丽梅, 李绍英, 等. 铁尾矿综合利用研究进展[J]. 矿产保护与利用, 2023, 43(6): 41−53.

    Google Scholar

    YIN C, BAI L M, LI S Y, et al. Research progress of comprehensive utilization ofiron tailings[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 41−53.

    Google Scholar

    [25] 梅益, 薛茂远, 唐芳艳, 等. 基于极差分析法与GA−ELM的电器连接器壳体注射成型工艺优化[J]. 塑料工业, 2021, 49(1): 75−80.

    Google Scholar

    MEI Y, XUE M Y, TANG F Y, et al. Optimization of injection molding process of electrical connector shell based on range analysis and GA−ELM[J]. China Plastics Industry, 2021, 49(1): 75−80.

    Google Scholar

    [26] 赵风文, 胡建华, 曾平平, 等. 基于正交试验的碱基−磷石膏胶结充填体配比优化[J]. 中国有色金属学报, 2021, 31(4): 1096−1105.

    Google Scholar

    ZHAO F W, HU J H, ZENG P P, et al. Optimization research of base−phosphogypsum cemented backfill ratio based on orthogonal test[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(4): 1096−1105.

    Google Scholar

    [27] 鲍梦燕, 郭晓潞, 施惠生. 水热合成托贝莫来石晶须及其耐高温性能的研究进展[J]. 功能材料, 2017, 48(11): 11075−11080+11085.

    Google Scholar

    BAO M Y, GUO X L, SHI H S. Progress of hydrothermal synthesis of tobermorite whiskers and their high temperature resistance properties[J]. Journal of Functional Materials, 2017, 48(11): 11075−11080+11085.

    Google Scholar

    [28] 罗树琼, 赵明慧, 杨雷, 等. 水热合成托贝莫来石固化重金属研究进展[J]. 新型建筑材料, 2022, 49(2): 9−14+29. doi: 10.3969/j.issn.1001-702X.2022.02.003

    CrossRef Google Scholar

    LUO S Q, ZHAO M H, YANG L, et al. A review on solidifying heavy metals through hydrothermal synthesis of tobermorite[J]. New Building Materials, 2022, 49(2): 9−14+29. doi: 10.3969/j.issn.1001-702X.2022.02.003

    CrossRef Google Scholar

    [29] PARADISO P, SANTOS RL, HORTA RB, et al. Formation of nanocrystal linetobermorite in calcium silicate binders with low C/S ratio[J]. Acta Mater, 2018, 152: 7−15. doi: 10.1016/j.actamat.2018.04.006

    CrossRef Google Scholar

    [30] LUO F, WEI C, XUE B, WANG S, et al. Dynamic hydrothermal synthesis of Al−substituted 11 Å tobermorite from solid waste fly ash residue−extracted Al2O3[J]. Res Chem Intermed, 2013, 39: 693−705. doi: 10.1007/s11164-012-0590-1

    CrossRef Google Scholar

    [31] KOMARNENI S, KOMARNENI JS, NEWALKAR B, et al. Microwave−hydrothermal synthesis of Al−substitutedtobermorite from zeolites[J]. Materials Research Bulletin, 2002, 37: 1025−1032. doi: 10.1016/S0025-5408(02)00758-4

    CrossRef Google Scholar

    [32] 翟媛媛, 曾庆栋, HELLMANN ROLAND, 等. 钾长石在碱性条件下的蚀变机制及其蚀变产物托贝莫来石的纳米结构研究[J]. 岩石学报, 2020, 36(9): 2834−2844. doi: 10.18654/1000-0569/2020.09.14

    CrossRef Google Scholar

    ZHAI Y Y, ZENG Q D, HELLMANN R, et al. Reaction mechanism during hydrothermal alterationof K−feldspar under alkaline conditions and nanostructures of the producted tobermorite[J]. Acta Petrologica Sinica, 2020, 36(9): 2834−2844. doi: 10.18654/1000-0569/2020.09.14

    CrossRef Google Scholar

    [33] ANOVITZ ML, COLE RD. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy AN Geochemistry, 2015, 80: 61−164.

    Google Scholar

    [34] GALVANKOVA L, MASILKO J, SOLNY T, et al. Tobermorite synthesis under hydrothermal conditions[J]. Procedia Engineering, 2016, 151: 100−107. doi: 10.1016/j.proeng.2016.07.394

    CrossRef Google Scholar

    [35] 张盼, 马鸿文. 利用钾长石粉体合成雪硅钙石的实验研究[J]. 岩石矿物学杂志, 2005, 24(4): 333−338.

    Google Scholar

    ZHANG P, MA H W. The synthesis of tobermorite from potassium feldspar powder: An experimental study[J]. Acta Petrologica Et Mineralogica, 2005, 24(4): 333−338.

    Google Scholar

    [36] 杜海. 合成雪硅钙石吸附Pb(Ⅱ)、Cd(Ⅱ)、Hg(Ⅱ)的研究[D]. 北京: 中国地质大学(北京), 2008.

    Google Scholar

    DU H. Study on adsorption of Pb(Ⅱ), Cd(Ⅱ), Hg(Ⅱ)by synthetic tobermorite[D]. Beijing: China University of Geosciences (Beijing), 2008.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(10)

Article Metrics

Article views(56) PDF downloads(1) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint