Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2025 Vol. 45, No. 1
Article Contents

WU Peng, HUANG Cong, LIU Xiaoyi, CHEN Qingze, JIANG Haodong, XIA Kaisheng, LI Zhen, WANG Yang. Confinement Synthesis of 1T Molybdenum Disulfide at the Interlayer of Montmorillonite and the Adsorption Properties of Heavy Metal Ions[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 60-69. doi: 10.13779/j.cnki.issn1001-0076.2024.08.010
Citation: WU Peng, HUANG Cong, LIU Xiaoyi, CHEN Qingze, JIANG Haodong, XIA Kaisheng, LI Zhen, WANG Yang. Confinement Synthesis of 1T Molybdenum Disulfide at the Interlayer of Montmorillonite and the Adsorption Properties of Heavy Metal Ions[J]. Conservation and Utilization of Mineral Resources, 2025, 45(1): 60-69. doi: 10.13779/j.cnki.issn1001-0076.2024.08.010

Confinement Synthesis of 1T Molybdenum Disulfide at the Interlayer of Montmorillonite and the Adsorption Properties of Heavy Metal Ions

More Information
  • 1T molybdenum disulfide (MoS2) has great potential for heavy metal adsorption in sewage. However, due to the difficulty of synthesis and poor stability, the research and application of 1T MoS2 adsorption materials are difficult to achieve breakthroughs. In this paper, the direct synthesis of 1T MoS2 in the interlayer of the rich and cheap natural layered mineral montmorillonite is realized by nano confinement effect, and the adsorbent of montmorillite−1T MoS2 interlayer composite material (M−S) is constructed. By means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X−ray diffractometer (XRD), Raman spectroscopy, X−ray photoelectron spectroscopy (XPS), the successful synthesis of 1T MoS2 in M−S has been proved, and the content of 1T phase is up to 92.5%. The prepared adsorbent materials were utilized for the efficient removal of Cd2+ from aqueous solutions, and the impacts of pH value, adsorption time, and initial Cd2+ concentration on the adsorption process were systematically investigated. The findings revealed that optimal adsorption performance was achieved at a pH value of 5.0, an adsorption time of 5 minutes, and an initial Cd2+ concentration of 250 mg/L. In conjunction with theoretical simulation, the optimal adsorption capacity was determined to be 43.9 mg/g, in accordance with the quasi−second−order kinetic equation and Langmuir isothermal adsorption model. This study presents a novel approach for synthesizing 1T phase molybdenum disulfide, and also offers valuable insights for the development of efficient heavy metal adsorbents.

  • 加载中
  • [1] 董颖博, 林海, 李冰. 环境矿物材料[M]. 北京: 冶金工业出版社, 2020.

    Google Scholar

    DONG Y B, LIN H, LI B. Environmental mineral material[M]. Beijing: Metallurgical Industry Press, 2020.

    Google Scholar

    [2] 鲁安怀. 天然铁的硫化物净化含铬污水的新方法[J]. 地学前缘, 1998, 5(1/2): 342.

    Google Scholar

    LU A H. A new method for purification of chromium−containing wastewater by natural iron sulfide[J]. Geoscience Frontiers, 1998, 5(1/2): 342.

    Google Scholar

    [3] 石俊仙, 鲁安怀, 陈洁. 天然黄铁矿除Cr(Ⅵ)中Cr2S3物相的发现[J]. 岩石矿物学杂志, 2005, 24(6): 539−542.

    Google Scholar

    SHI J X, LU A H, CHEN J. The discovery of Cr2S3 phas during the treatment of Cr (Ⅵ) by natural pyrite[J]. Acta Petrologica et Mineralogica, 2005, 24(6): 539−542.

    Google Scholar

    [4] 修其慧. 过渡金属氧硫化物及其复合材料去除重金属离子的吸附机制研究[D]. 青岛: 青岛科技大学, 2019.

    Google Scholar

    XIU Q H. Study on adsorption mechanism of transition metal oxide/sulfide and their composite materials for removal of heavy metal ions[D]. Qingdao: Qingdao University of Science and Technology, 2019.

    Google Scholar

    [5] 张翔. 一种新型硫化物重金属捕集剂的合成与应用[J]. 广州化工, 2014, 42(19): 130−132.

    Google Scholar

    ZHANG X. The synthesis and application of a kind of sulfide for wastewater with heavy metal lons treatment[J]. Guangzhou Chemical Industry, 2014, 42(19): 130−132.

    Google Scholar

    [6] 汪辰, 毕磊, 潘纲. 硫化锰纳米颗粒高效去除重金属镉[J]. 环境工程学报, 2020, 14(1): 24−33.

    Google Scholar

    WANG C, BI L, PAN G. High−efficiency removal of heavy metal cadmium by manganese sulfide nanoparticles[J]. Journal of Environmental Engineering, 2020, 14(1): 24−33.

    Google Scholar

    [7] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642−655.

    Google Scholar

    LIU Y, ZHANG X B, ZHAO Y C. Two−dimensional MoS2 nanomaterials and applications in water treatment[J]. Progress in Chemistry, 2020, 32(5): 642−655.

    Google Scholar

    [8] 陈德良, 董会娜, 张锐. 二硫化钼基纳米复合材料的构筑与应用[J]. 郑州大学学报(工学版), 2015, 36(6): 18−29.

    Google Scholar

    CHEN D L, DONG H N, ZHANG R. Advances in synthesis and applications of molybdenum disulfide based nanocomposites[J]. Journal of Zhengzhou University (Engineering Science), 2015, 36(6): 18−29.

    Google Scholar

    [9] 杜淼, 张馨. 二维纳米材料在水处理中的应用研究进展[J]. 无机盐工业, 2020, 52(1): 17−21.

    Google Scholar

    DU M, ZHANG X. Progress in application research of two−dimensional nanomaterials in water treatment[J]. Inorganic Chemicals Industry, 2020, 52(1): 17−21.

    Google Scholar

    [10] LI Z, FAN R, HUA Z, et al. Ethanol introduced synthesis of ultrastable 1T−MoS2 for removal of Cr(Ⅵ)[J]. Journal of Hazardous Materials, 2020, 394: 122525. doi: 10.1016/j.jhazmat.2020.122525

    CrossRef Google Scholar

    [11] WANG Z, SIM A, URBAN J J, et al. Removal and recovery of heavy metal ions by two−dimensional MoS2 nanosheets: performance and mechanisms[J]. Environmental Science & Technology, 2018, 52: 9741−9748.

    Google Scholar

    [12] KANG Y, NAJMAEI S, LIU Z, et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer[J]. Advanced Materials, 2014, 26: 6467−6471. doi: 10.1002/adma.201401802

    CrossRef Google Scholar

    [13] YIN Y, HAN J, ZHANG Y, et al. Contributions of phase, sulfur vacancies, and edges to the hydrogen evolution reaction catalytic activity of porous molybdenum disulfide nanosheets[J]. Journal of the American Chemical Society, 2016, 138: 7965−7972. doi: 10.1021/jacs.6b03714

    CrossRef Google Scholar

    [14] LIU W, XU S, GUAN S, et al. Confined synthesis of carbon nitride in a layered host matrix with unprecedented solid−state quantum yield and stability[J]. Advanced Materials, 2018, 30(2): 1704376.1-1704376.8.

    Google Scholar

    [15] LI Z, ZHANG X, CHENG H, et al. Confined synthesis of 2D nanostructured materials toward electrocatalysis[J]. Advanced Energy Materials, 2020(11):10. DOI:10.1002/aenm.201900486.

    Google Scholar

    [16] CHEN X, WANG Z, WEI Y, et al. High phase−purity 1T−MoS2 ultrathin nanosheets by a spatially confined template[J]. Angewandte Chemie International Edition, 2019, 131: 17785−17788.

    Google Scholar

    [17] 陈方明, 陆琦. 天然矿物材料在废水处理中的应用[J]. 化工矿产地质, 2004, 26(1): 35−40.

    Google Scholar

    CHEN F M, LU Q. The application of natural mineral materials to the disposal of wastewater[J]. Geology of Chemical Minerals, 2004, 26(1): 35−40.

    Google Scholar

    [18] 陈尧, 马玉龙, 谢丽, 等. 有机蒙脱石的制备及其应用研究进展[J]. 材料导报, 2009, 23(14): 432−434+438.

    Google Scholar

    CHEN Y, MA Y L, XIE L, et al. Development of preparation and application of organic−montmorillonite[J]. Materials Reports, 2009, 23(14): 432−434+438.

    Google Scholar

    [19] YANG X, ZHU H, LIU J, et al. A mesoporous structure for efficient photocatalysts: Anatase nanocrystals attached to leached clay layers[J]. Microporous and Mesoporous Materials, 2008, 112: 32−44. doi: 10.1016/j.micromeso.2007.09.017

    CrossRef Google Scholar

    [20] PENG K, FU L, YANG H, et al. Hierarchical MoS2 intercalated clay hybrid nanosheets with enhanced catalytic activity[J]. Nano Research, 2017, 10: 570−583. doi: 10.1007/s12274-016-1315-3

    CrossRef Google Scholar

    [21] WANG Z, SIM A, URBAN J J, et al. Removal and recovery of heavy metal ions by two−dimensional MoS2 nanosheets: Performance and mechanisms[J]. Environmental Science & Technology, 2018, 52(17): 9741−9748.

    Google Scholar

    [22] ZHAN W, YUAN Y, ZHANG X, et al, Efficient and selective Lead (Ⅱ) removal within a wide concentration range through chemisorption and electrosorption coupling process via defective MoS2 electrode[J]. Separation and Purification Technology, 2024, 329: 125183.

    Google Scholar

    [23] 夏银, 刘月迎, 王丽娟, 等. 蛭石对水中重金属离子的吸附性能[J]. 硅酸盐学报, 2022, 50(5): 1357−1363.

    Google Scholar

    XIA Y, LIU Y Y, WANG L J, et al. Adsorption properties of heavy metal ions in water by vermiculite[J]. Journal of the Chinese Ceramic Society, 2022, 50(5): 1357−1363.

    Google Scholar

    [24] 来雪慧, 闫彩, 任晓莉, 等. 蒙脱石−钢渣复合吸附颗粒对水中Cd2+的吸附及其它离子的影响研究[J]. 中北大学学报(自然科学版, 2018, 39(5): 566−571.

    Google Scholar

    LAI X H, YAN C, REN X L, et al. Research on Cd2+ adsorption and effects of heavy ions of montmorillonite−slag composite particle[J]. Journal of North University of China (Natural Science Edition), 2018, 39(5): 566−571.

    Google Scholar

    [25] 江湛如, 黄放, 张攀, 等. 两种天然矿物改性材料对模拟废水中Cd2+的吸附特性[J]. 环境科学研究, 2019, 32(2): 356−364.

    Google Scholar

    JIANG Z R, HUANG F, ZHANG P, et al. Adsorption characteristics of cadmium(Ⅱ) simulated wastewater by two organic modified mineral materials[J]. Research of Environmental Sciences, 2019, 32(2): 356−364.

    Google Scholar

    [26] 赵徐霞, 钛柱撑蒙脱石复合吸附剂的制备及对Cd2+的吸附研究[D]. 贵阳: 贵州大学, 2019.

    Google Scholar

    ZHAO X X. The preparation of activated carbon/titanium pillared montmorillonite composite adsorbent and adsorption of cadmium ions[D]. Guiyang: Guizhou University, 2019.

    Google Scholar

    [27] 刘琦, 任帮政, 张是洲, 等. Cd2+在针铁矿蒙脱石及铁−蒙复合物上的吸附特性[J], 现代盐化工. 2021, 48(2): 41−43.

    Google Scholar

    LIU Q, REN B Z, ZHANG S Z, et al. Adsorption characteristics of Cd2+ on goethite−montmorillonite complexes[J]. Modern Salt and Chemical Industry, 2021, 48(02): 41−43.

    Google Scholar

    [28] YU R, WANG S, WANG D, et al. Removal of Cd2+ from aqueous solution with carbon modified aluminum−pillared montmorillonite[J]. Catalysis Today, 2008, 139: 135−139. doi: 10.1016/j.cattod.2008.08.015

    CrossRef Google Scholar

    [29] ZHAO X, TUO B, LONG S, et al. Study on adsorption of Cd2+ by Ti−pillared montmorillonite−mixed activated carbon[J]. Micro & Nano Letters, 2021, 16(5): 304−312.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Tables(3)

Article Metrics

Article views(72) PDF downloads(13) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint