Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 6
Article Contents

LIU Pengliang. Development Status and Prospects of Coal Based Solid Waste Filling Materials and Filling Mining Technology[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 15-24. doi: 10.13779/j.cnki.issn1001-0076.2024.06.002
Citation: LIU Pengliang. Development Status and Prospects of Coal Based Solid Waste Filling Materials and Filling Mining Technology[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 15-24. doi: 10.13779/j.cnki.issn1001-0076.2024.06.002

Development Status and Prospects of Coal Based Solid Waste Filling Materials and Filling Mining Technology

  • Coal based solid waste is one of the major industrial wastes, and its large−scale disposal and utilization are of great practical significance for the sustainable development of the coal industry and the protection of the ecological environment in mining areas. As a green mining method that combines underground disposal of coal based solid waste and "three down" coal pressure recovery, backfill mining has been rapidly developed and applied in the past 20 years, forming a technical system mainly consisting of solid and paste filling materials, and fully mechanized and continuous mining filling as the main processes. This paper summarizes the technical characteristics and classification of coal based solid waste filling and mining, represented by gangue and fly ash. The basic physical and chemical properties of solid wastes such as coal gangue, fly ash, slag, gasification slag, and desulfurization gypsum indicate that coal based solid waste has the feasibility of being used as filling materials. The compression characteristics of gangue solid and paste filling materials are summarized, and the characteristics of the two main filling and mining processes, continuous mining and charging and comprehensive mining filling, are analyzed. Prospects are made in expanding the range of coal based solid waste filling materials, improving the production capacity of filling and mining, and reducing filling costs, in order to provide ideas for the future development of coal based solid waste filling and mining.

  • 加载中
  • [1] LIU P L. Fully mechanized mining technology and practice of water conservation with large gravity filling of aeolian sand−like paste[J]. Advances in Civil Engineering, 2022: 1−9. DOI: 10.1155/2022/2405174.

    Google Scholar

    [2] 张吉雄, 张强, 周楠, 等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报, 2022, 47(12): 4167−4181.

    Google Scholar

    ZHANG J X, ZHANG Q, ZHOU N, et al. Research progress and prospects of coal based solid waste backfill mining technology[J]. Journal of Coal Science, 2022, 47(12): 4167−4181.

    Google Scholar

    [3] 孙志军, 李贞, 赵俊吉, 等. 山西省典型煤电基地煤基固废综合利用研究与资源化分析[J]. 中国煤炭, 2021, 47(4): 70−80.

    Google Scholar

    SUN Z J, LI Z, ZHAO J J, et al. Research on comprehensive utilization and resource analysis of coal−based solid waste in typical coal power bases in shanxi province[J]. China Coal, 2021, 47(4): 70−80.

    Google Scholar

    [4] 郭朝阳. 煤基固废膏体充填材料研究[D]. 焦作: 河南理工大学, 2023.

    Google Scholar

    GUO C Y. Research on backfill materials of coal−based solid waste paste[D]. Jiaozuo: Henan Polytechnic University, 2023.

    Google Scholar

    [5] 彭毅凡. 煤基固废充填开采覆岩移动规律及渗透性研究[D]. 徐州: 中国矿业大学, 2023.

    Google Scholar

    PENG Y F. Study on overlying strata movement law and permeability in coal−based solid waste backfill mining[D]. Xuzhou: China University of Mining and Technology, 2023.

    Google Scholar

    [6] ZHOU K Q, GONG K L, ZHOU Q Q, et al. Estimating the feasibility of using industrial solid wastes as raw material for polyurethane composites with low fire hazards[J]. Journal of Cleaner Production, 2020, 257: 120606.

    Google Scholar

    [7] 顾成, 李宇. 煤基固废物综合利用研究进展[J]. 煤炭与化工, 2020, 43(9): 98−101,106.

    Google Scholar

    GU C, LI Y. Research progress on comprehensive utilization of coal based solid waste[J]. Coal and Chemical Industry, 2020, 43(9): 98−101,106.

    Google Scholar

    [8] GUO Y X, YAN K Z, CUI L. Improved extraction of alumina from coal gangue by surface mechanically grinding modification[J]. Powder Technology, 2016, 302: 33−41. doi: 10.1016/j.powtec.2016.08.034

    CrossRef Google Scholar

    [9] GUO Y X, YAN K Z, CUI L. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J]. International Journal of Mineral Processing, 2014, 131: 51−57. doi: 10.1016/j.minpro.2014.07.001

    CrossRef Google Scholar

    [10] LI C, WAN J H, SUN H H, et al. Investigation on the activation of coal gangue by a new compound method[J]. Journal of Hazardous Materials, 2010, 179: 515−520. doi: 10.1016/j.jhazmat.2010.03.033

    CrossRef Google Scholar

    [11] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165−178.

    Google Scholar

    LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165−178.

    Google Scholar

    [12] 贾敏. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2019, 39(4): 46−52.

    Google Scholar

    JIA M. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2019, 39(4): 46−52.

    Google Scholar

    [13] 杨权成. 煤矸石提取氧化铝及其制备功能材料研究[D]. 北京: 中国矿业大学(北京), 2020.

    Google Scholar

    YANG Q C. Research on the extraction of alumina from coal gangue and its preparation of functional materials [D]. Beijing: China University of Mining and Technology (Beijing), 2020.

    Google Scholar

    [14] 王爱国, 朱愿愿, 徐海燕, 等. 混凝土用煤矸石骨料的研究进展[J]. 硅酸盐通报, 2019, 38(7): 2076−2086.

    Google Scholar

    WANG A G, ZHU Y Y, XU H Y, et al. Research progress on coal gangue aggregates for concrete[J]. Silicate Bulletin, 2019, 38(7): 2076−2086.

    Google Scholar

    [15] XIAO J, LI F C, ZHONG Q F, et al. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J]. Hydrometallurgy, 2015, 155: 118−124. doi: 10.1016/j.hydromet.2015.04.018

    CrossRef Google Scholar

    [16] HAN L N, REN W G, WANG B, et al. Extraction of SiO2 and Al2O3 from coal gangue activated by supercritical water[J]. Fuel, 2019, 253: 1184−1192. doi: 10.1016/j.fuel.2019.05.118

    CrossRef Google Scholar

    [17] 周楠, 姚依南, 宋卫剑, 等. 煤矿矸石处理技术现状与展望[J]. 采矿与安全工程学报, 2020, 37(1): 136−146.

    Google Scholar

    ZHOU N, YAO Y N, SONG W J, et al. Current status and prospects of coal mine gangue treatment technology[J]. Journal of Mining and Safety Engineering, 2020, 37(1): 136−146.

    Google Scholar

    [18] 黄艳利, 王文峰, 卞正富. 新疆煤基固体废弃物处置与资源化利用研究[J]. 煤炭科学技术, 2021, 49(1): 319−331.

    Google Scholar

    HUANG Y L, WANG W F, BIAN Z F. Prospects of resource utilization and disposal of coal−based solid wastes in Xinjiang[J]. Coal Science and Technology, 2021, 49(1): 319−331.

    Google Scholar

    [19] 胡炳南, 刘鹏亮, 崔锋, 等. 我国充填采煤技术回顾及发展现状[J]. 煤炭科学技术, 2020, 48(9): 39−47.

    Google Scholar

    HU B N, LIU P L, CUI F, et al. Review and development status of filling coal mining technology in China[J]. Coal Science and Technology, 2020, 48(9): 39−47.

    Google Scholar

    [20] LIU L, RUAN S S, QI C C, et al. Co−disposal of magnesium slag and high−calcium fly ash as cementitious materials in backfill[J]. Journal of Cleaner Production, 2021, 279: 123684.

    Google Scholar

    [21] 李肽脂, 吴锋, 李辉, 等. 复合激发煤气化渣基胶凝材料的制备[J]. 环境工程学报, 2022, 16(7): 2356−2364.

    Google Scholar

    LI T Z, WU F, LI H, et al. Preparation of composite activated coal gasification slag−based cementitious materials[J]. Chinese Joumal of Environmental Engineering, 2022, 16(7): 2356−2364.

    Google Scholar

    [22] 袁晓辉, 石艳羽, 芦峰, 等. 激发剂种类对碱矿渣胶凝材料性能的影响研究[J]. 信阳师范学院学报(自然科学版), 2021, 34(4): 667−672.

    Google Scholar

    YUAN X H, SHI Y Y, LU F, et al. Studies on the influence of the properties of alkali−activated slag cementitious materials with different activator types[J]. Journal of Xinyang Normal University (Natural Science Edition), 2021, 34(4): 667−672.

    Google Scholar

    [23] 谢和平, 张吉雄, 高峰, 等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报, 2024, 49(1): 36−46.

    Google Scholar

    XIE H P, ZHANG J X, GAO F, et al. Theory and technical conception of carbon−negative and highefficient backfill mining in coal mines[J]. Journal of China Coal Society, 2024, 49(1): 36−46.

    Google Scholar

    [24] 孙作正. 煤基固废制备低碳胶凝材料及混凝土护坡砌块试验研究[D]. 保定: 华北水利水电大学, 2023.

    Google Scholar

    SUN Z Z. Experimental study on preparation of low carbon cementitious material and concrete slope protection block by coal based solid waste[D]. Baoding: North China University of Water Resources and Electric Power, 2023.

    Google Scholar

    [25] 潘昱蒿. 硫铝酸盐水泥−煤基固废−固废石膏胶凝材料的制备与研究[D]. 太原: 太原理工大学, 2023.

    Google Scholar

    PAN Y H. Preparation and research of sulphoaluminate cement−coal−based solid waste−solid waste gypsum cementitious material[D]. Taiyuan: Taiyuan University of Technology, 2023.

    Google Scholar

    [26] 王志法, 朱玉杰, 王志刚, 等. 原生矸石风力充填技术研究与应用[J]. 科技信息, 2010, 25: 2.

    Google Scholar

    WANG Z F, ZHU Y J, WANG Z G, et al. Research and application of wind power filling technology for primary gangue[J]. Science & Technology Information, 2010, 25: 2.

    Google Scholar

    [27] 蒋光熹, 石文波. 矿井风力充填技术[M]. 北京: 煤炭工业出版社, 1965.

    Google Scholar

    JIANG G X, SHI W B. Mine wind filling technology[M]. Beijing: China Coal Industry Publishing House, 1965.

    Google Scholar

    [28] 张鹏, 余宏, 李乃录, 等. 粉煤灰优化破碎矸石充填材料承载压缩力学特性试验研究[J]. 矿业研究与开发, 2022, 42(3): 89−93.

    Google Scholar

    ZHANG P, YU H, LI N L, et al. Experimental study on the bearing and compression mechanical properties of fly ash optimized crushed gangue filling materials[J]. Mining Research and Development, 2022, 42(3): 89−93.

    Google Scholar

    [29] 刘鹏亮. 固料特性对煤矿充填料浆流动性影响规律研究[D]. 北京: 煤炭科学研究总院, 2021.

    Google Scholar

    LIU P L. Study on the influence of solid material characteristics on the flow ability of coal mine filling slurry [D]. Beijing: General Institute of Coal Science Research, 2021.

    Google Scholar

    [30] 刘鹏亮, 崔锋, 王浩宇, 等. 粗细颗粒混合纯矸石充填料浆流动性实验研究[J]. 煤炭技术, 2021, 40(12): 27−31.

    Google Scholar

    LIU P L, CUI F, WANG H Y, et al. Experimental study on the flow ability of coarse and fine particle mixed pure gangue filling slurry[J]. Coal Technology, 2021, 40(12): 27−31.

    Google Scholar

    [31] 耿华锋, 王新, 王东生, 等. 短壁联采充填工艺提效措施研究与应用[J]. 煤炭科学技术, 2020, 48(S2): 240−244.

    Google Scholar

    GENG H F, WANG X, WANG D S, et al. Research and application of short wall combined mining back filling technology[J]. Coal Science and Technology, 2020, 48(S2): 240−244.

    Google Scholar

    [32] 李永亮, 路彬, 杨仁树, 等. 煤矿连采连充式胶结充填采煤技术与典型工程案例[J]. 煤炭学报, 2022, 47(3): 1055−1071.

    Google Scholar

    LI Y L, LU B, YANG RS, et al. Cemented backfilling mining technology with continuous mining and continuous backfilling method for underground coal mine and typical engineering cases[J]. Journal of China Coal Society, 2022, 47(3): 1055−1071.

    Google Scholar

    [33] 刘建功, 李新旺, 何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报, 2020, 45(1): 141−150.

    Google Scholar

    LIU JG, LI XW, HE T. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society, 2020, 45(1): 141−150.

    Google Scholar

    [34] 冀宇鑫, 李鹤鹤, 宋高峰. 部分充填开采工作面覆岩移动规律研究[J]. 河南理工大学学报(自然科学版), 2023, 42(5): 49−56.

    Google Scholar

    JI YX, LI H H, SONG G F. Study on surrounding rock stability of partially filled mining face underthe influence of filling stiffness and filling step[J]. Journal of Henan Polytechnic University(Natural Science), 2023, 42(5): 49−56.

    Google Scholar

    [35] 常贯峰. 多源煤基固废材料充填特性及其与矸石组合承载性能实验研究[D]. 合肥: 安徽理工大学, 2022.

    Google Scholar

    CHANG G F. Experimental study on filling characteristics and bearing capacity combined with gangue of multi−source coal based solid waste materials[D]. Hefei: Anhui University of Science and Technology, 2022.

    Google Scholar

    [36] 章红专. 关于煤化工气化炉渣资源化利用技术的探讨[J]. 石油化工, 2020(9): 133−134.

    Google Scholar

    ZHANG H Z. Discussion on the resource utilization technology of coal chemical gasification slag[J]. Petrochemical, 2020(9): 133−134.

    Google Scholar

    [37] 张云飞, 姚华彦, 扈慧敏, 等. 燃煤电厂炉渣综合利用现状分析[J]. 中国资源综合利用, 2020, 38(11): 72−74+104.

    Google Scholar

    ZHANG Y F, YAO H Y, HU H M, et al. Analysis of the current situation of comprehensive utilization of slag in coal−fired power plants [J]. China Resources Comprehensive Utilization, 2020, 38 (11): 72−74+104.

    Google Scholar

    [38] Phan Van Viet, 王东. 热电厂炉渣作为煤矿膏体充填材料的配比试验研究[J]. 中国安全生产科学技术, 2018, 14(1): 49−55.

    Google Scholar

    Phan Van Viet, WANG D. Experimental study on the ratio of slag from thermal power plants as coal mine paste filling material[J]. China Safety Production Science and Technology, 2018, 14(1): 49−55.

    Google Scholar

    [39] 孙祺, 刘泽阳, 刘广友, 等. 浅谈最新燃煤电厂脱硫石膏的处理和资源化[J]. 中国设备工程, 2024(4): 240−242.

    Google Scholar

    SUN Q, LIU Z Y, LIU GY, et al. Discussion on the treatment and resource utilization of desulfurization gypsum in the latest coal−fired power plants[J]. China Equipment Engineering, 2024(4): 240−242.

    Google Scholar

    [40] 杨科, 魏祯, 何祥, 等. 矸石集料承载力学特性模拟研究[J]. 煤炭学报, 2022, 47(3): 1087−1097.

    Google Scholar

    YANG K, WEI Z, HE X, et al. Simulation study on the bearing mechanical properties of gangue aggregates[J]. Journal of Coal Science, 2022, 47(3): 1087−1097.

    Google Scholar

    [41] 刘鹏亮. 矸石充填材料应力应变特征实验研究[J]. 矿业安全与环保, 2019, 46(4): 13−16. doi: 10.3969/j.issn.1008-4495.2019.04.003

    CrossRef Google Scholar

    LIU P L. Experimental study on stress−strain characteristics of gangue filling materials[J]. Mining Safety and Environmental Protection, 2019, 46(4): 13−16. doi: 10.3969/j.issn.1008-4495.2019.04.003

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(6)

Tables(9)

Article Metrics

Article views(85) PDF downloads(4) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint