Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 6
Article Contents

HE Zhanwei, HE Shuai, WANG Guishuai, LI Shihao, CHEN Guangyu, GAO Mangmang, LI Huibiao. Research and Progress of Comprehensive Utilization Technologies of China's Coal Gangue in the Context of Carbon Peaking and Carbon Neutrality[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 1-14. doi: 10.13779/j.cnki.issn1001-0076.2024.06.001
Citation: HE Zhanwei, HE Shuai, WANG Guishuai, LI Shihao, CHEN Guangyu, GAO Mangmang, LI Huibiao. Research and Progress of Comprehensive Utilization Technologies of China's Coal Gangue in the Context of Carbon Peaking and Carbon Neutrality[J]. Conservation and Utilization of Mineral Resources, 2024, 44(6): 1-14. doi: 10.13779/j.cnki.issn1001-0076.2024.06.001

Research and Progress of Comprehensive Utilization Technologies of China's Coal Gangue in the Context of Carbon Peaking and Carbon Neutrality

  • In the context of carbon peaking and carbon neutrality, China is continuously promoting the upgrading of industrial and energy structures, advocating for green, environmentally friendly, and low−carbon development. The massive accumulation of coal gangue in our country has led to serious waste of resources and may trigger a series of environmental issues. The effective treatment and resource utilization of coal gangue have become urgent tasks for the coal industry. This paper systematically reviews the research progress of coal gangue in the fields of metal extraction, material preparation, combustion utilization, and ecological restoration. Coal gangue can recover metal elements such as aluminum, iron, and the "three rare" elements, but the recovery process is prone to produce a large amount of waste acid and slag, posing potential environmental pollution risks. In addition, coal gangue can not only serve as traditional building materials such as concrete aggregate, brick, and cement raw materials but can also be used to prepare high−value−added new materials such as porous ceramics and zeolites. The application of co−combustion technology helps to improve the thermal energy utilization efficiency of coal gangue and reduce greenhouse gas emissions. As a soil conditioner, coal gangue shows promising prospects in ecological restoration, but attention should be paid to the risk of secondary pollution caused by heavy metal ions. Based on the current problems and challenges in the treatment of coal gangue, this review systematically explores the path of future high−quality development of coal gangue, and proposes the use of a variety of utilization methods combined with the strategy to achieve the resourceful utilization of coal gangue, which in turn promotes the coordinated development of the economy, environment and social benefits.

  • 加载中
  • [1] 黄晟, 王静宇, 郭沛, 等. 碳中和目标下能源结构优化的近期策略与远期展望[J]. 化工进展, 2022, 41(11): 5695−5708.

    Google Scholar

    HUANG S, WANG J Y, GUO P, et al. Short−term strategy and long−term prospect of energy structure optimization under carbon neutrality target[J]. Chemical Industry and Engineering Progress, 2022, 41(11): 5695−5708.

    Google Scholar

    [2] XU G Y, ZANG L M, SCHWARZ P, et al. Achieving China's carbon neutrality goal by economic growth rate adjustment and low−carbon energy structure[J]. Energy Policy, 2023, 183: 113717.

    Google Scholar

    [3] REN H B, WU Q, HE W G, et al. Research on regional low−carbon development path based on LEAP model: Taking the Lin−gang special area as an example[J]. Energy Reports, 2022, 8: 327−335.

    Google Scholar

    [4] 李雅迪. 我国煤矸石综合利用现状与展望[J]. 煤炭经济研究, 2024, 44(4): 127−133.

    Google Scholar

    LI Y D. Current situation and prospects of coal gangue's comprehensive utilization[J]. Coal Economic Research, 2024, 44(4): 127−133.

    Google Scholar

    [5] ZHENG Q W, ZHOU Y, LIU X, et al. Environmental hazards and comprehensive utilization of solid waste coal gangue[J]. Progress in Natural Science−Materials International, 2024, 34(2): 223−239. doi: 10.1016/j.pnsc.2024.02.012

    CrossRef Google Scholar

    [6] XIE S R, PAN H, LEI W G, et al. Technology and engineering test of filling goaf with coal gangue slurry[J]. Scientific Reports, 2023, 13: 20536. doi: 10.1038/s41598-023-47621-8

    CrossRef Google Scholar

    [7] 李振, 雪佳, 朱张磊, 等. 煤矸石综合利用研究进展[J]. 矿产保护与利用, 2021, 41(6): 165−178.

    Google Scholar

    LI Z, XUE J, ZHU Z L, et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2021, 41(6): 165−178.

    Google Scholar

    [8] 潘硕, 胡雨晴, 王海燕, 等. 煤矸石综合利用技术现状与标准体系研究[J]. 中国矿业, 2024, 33(7): 89−98. doi: 10.12075/j.issn.1004-4051.20240270

    CrossRef Google Scholar

    PAN S, HU Y Q, WANG H Y, et al. Research on comprehensive utilization technology and standard system of coal gangue[J]. China Mining Magazine, 2024, 33(7): 89−98. doi: 10.12075/j.issn.1004-4051.20240270

    CrossRef Google Scholar

    [9] 吴长亮. 煤矸石协同多源固废多级利用制备功能性透水混凝土的试验研究[D]. 济南: 山东大学, 2023.

    Google Scholar

    WU C L. Experimental study on preparation of functional pervious concrete via multi−stage utilization of coal gangue together with multi−source solid wastes[D]. Ji’nan: Shandong University, 2023.

    Google Scholar

    [10] 邓友生, 董晨辉, 吴阿龙, 等. 我国煤矸石山综合治理现状及零碳治理探索[J]. 煤矿安全, 2024, 55(10): 120−128. doi: 10.3390/ma15134495

    CrossRef Google Scholar

    DENG Y S, DONG C H, WU A L, et al. Comprehensive treatment status and zero carbon treatment exploration of coal gangue hill in China[J]. Safety in Coal Mines, 2024, 55(10): 120−128. doi: 10.3390/ma15134495

    CrossRef Google Scholar

    [11] JIAO Y W, QIAO J Q, JIA R J, et al. The influence of carbon imperfections on the physicochemical characteristics of coal gangue aggregates[J]. Construction and Building Materials, 2023, 409: 133965. doi: 10.1016/j.conbuildmat.2023.133965

    CrossRef Google Scholar

    [12] 崔昕茹, 霍雪萍, 周炳杰, 等. 我国煤矸石空间分布特征与分级分质利用路径[J/OL]. 环境科学, 1−14[2024−10−28]. https://doi.org/10.13227/j.hjkx.202401269.

    Google Scholar

    CUI X R, HUO X P, ZHOU B J, et al. Spatial distribution characteristics and graded utilization path of coal gangue in China[J/OL]. Environmental Science, 1−14[2024−10−28]. https://doi.org/10.13227/j.hjkx.202401269.

    Google Scholar

    [13] 贾建慧, 马宁, 董阳, 等. 煤矸石综合利用研究进展[J]. 洁净煤技术, 2024, 30(S1): 36−45.

    Google Scholar

    JIA J H, MA N, DONG Y, et al. Review on the comprehensive utilization of coal gangue[J]. Clean Coal Technology, 2024, 30(S1): 36−45.

    Google Scholar

    [14] 赵龙毅, 翟慧兵, 张建伟, 等. 山西煤矸石中铝元素矿物赋存形态及酸浸溶出规律[J/OL]. 煤炭科学技术, 1−11[2024−10−28]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240513.0843.004.html.

    Google Scholar

    ZHAO L Y, ZHAI H B, ZHANG J W, et al. Mineral occurrence and acid leaching characteristic of aluminum for coal gangue in Shanxi[J/OL]. Coal Science and Technology, 1−11[2024−10−28]. http://kns.cnki.net/kcms/detail/11.2402.TD.20240513.0843.004.html.

    Google Scholar

    [15] 胡恬, 张琨. 陕西澄合矿区煤矸石绿化基质研究[J]. 西安科技大学学报, 2022, 42(4): 709−715.

    Google Scholar

    HU T, ZHANG K. Research on greening substrates of coal gangue in Chenghe mining area of Shaanxi province[J]. Journal of Xi'an University of Science and Technology, 2022, 42(4): 709−715.

    Google Scholar

    [16] 曾鹏, 谢海云, 晋艳玲, 等. 我国煤矸石的特性及其提取氧化铝研究进展[J]. 矿产保护与利用, 2022, 42(6): 21−29.

    Google Scholar

    ZENG P, XIE H Y, JIN Y L, et al. A review on characteristics and alumina extraction of coal gangue in China[J]. Conservation and Utilization of Mineral Resources, 2022, 42(6): 21−29.

    Google Scholar

    [17] 祁星鑫, 王晓军, 黎艳, 等. 新疆主要煤区煤矸石的特征研究及其利用建议[J]. 煤炭学报, 2010, 35(7): 1197−1201.

    Google Scholar

    QI X X, WANG X J, LI Y, et al. Study on properties of the coal gangues from Xinjiang main coal mine regions and their utilization suggestions[J]. Journal of China Coal Society, 2010, 35(7): 1197−1201.

    Google Scholar

    [18] 柴德亮, 白建光, 海连富, 等. 宁东地区煤矸石特征研究[J]. 科技创新与应用, 2023, 13(21): 105−107+112.

    Google Scholar

    CHAI D L, BAI J G, HAI L F, et al. Study on characteristics of coal gangue in Ningdong area[J]. Technology Innovation and Application, 2023, 13(21): 105−107+112.

    Google Scholar

    [19] 晏祥政, 李先海, 王贤晨, 等. 煤矸石粉掺和料对水泥胶砂试块性能影响研究[J]. 非金属矿, 2023, 46(3): 1−5. doi: 10.3969/j.issn.1000-8098.2023.03.001

    CrossRef Google Scholar

    YAN X Z, LI X H, WANG X C, et al. Study on the effect of coal gangue powder admixture on properties of cement mortar test block[J]. Non−Metallic Mines, 2023, 46(3): 1−5. doi: 10.3969/j.issn.1000-8098.2023.03.001

    CrossRef Google Scholar

    [20] ZHANG Y L, LING T C. Reactivity activation of waste coal gangue and its impact on the properties of cement−based materials − A review[J]. Construction and Building Materials, 2020, 234: 117424. doi: 10.1016/j.conbuildmat.2019.117424

    CrossRef Google Scholar

    [21] 张磊, 陈航超, 潘金禾, 等. 煤系锂和稀土的赋存特征与富集提取研究进展[J]. 矿产保护与利用, 2023, 43(6): 1−13.

    Google Scholar

    ZHANG L, CHEN H C, PAN J H, et al. Research progress on occurrence characteristics, enrichment and extraction of coal−based lithium and rare earth[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 1−13.

    Google Scholar

    [22] 康超, 乔金鹏, 杨胜超, 等. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报, 2023, 74(7): 2783−2799.

    Google Scholar

    KANG C, QIAO J P, YANG S C, et al. Research progress on activation extraction of valuable metals in coal gangue[J]. CIESC Journal, 2023, 74(7): 2783−2799.

    Google Scholar

    [23] 赵利军. 非铝土矿氧化铝提取与中国的粉煤灰资源[J]. 神华科技, 2017, 15(4): 88−92. doi: 10.3969/j.issn.1674-8492.2017.04.027

    CrossRef Google Scholar

    ZHAO L J. Non−bauxite alumina extraction and fly ash resources in China[J]. Energy Science and Technology, 2017, 15(4): 88−92. doi: 10.3969/j.issn.1674-8492.2017.04.027

    CrossRef Google Scholar

    [24] CHEN J L, LU X W. Synthesis and characterization of zeolites NaA and NaX from coal gangue[J]. Journal of Material Cycles and Waste Management, 2018, 20(1): 489−495. doi: 10.1007/s10163-017-0605-5

    CrossRef Google Scholar

    [25] XIAO J, LI F C, ZHONG Q F, et al. Separation of aluminum and silica from coal gangue by elevated temperature acid leaching for the preparation of alumina and SiC[J]. Hydrometallurgy, 2015, 155: 118−124. doi: 10.1016/j.hydromet.2015.04.018

    CrossRef Google Scholar

    [26] ZHAO J C, YU T, ZHANG H, et al. Study on extraction valuable metal elements by co−roasting coal gangue with coal gasification coarse slag[J]. Molecules, 2024, 29(1): 130.

    Google Scholar

    [27] SANGITA S, NAY N, PANDA C R. Extraction of aluminium as aluminium sulphate from thermal power plant fly ashes[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(9): 2082−2089. doi: 10.1016/S1003-6326(17)60231-0

    CrossRef Google Scholar

    [28] ZHANG Y H, ZHAO X S, SHANG B Y, et al. Study on mechanism and kinetics of iron removal by chlorination roasting of coal gangue[J]. Metallurgical Research and Technology, 2024, 121(2): 216. doi: 10.1051/metal/2024013

    CrossRef Google Scholar

    [29] GUO Y X, LV H B, YANG X, et al. AlCl3·6H2O recovery from the acid leaching liquor of coal gangue by using concentrated hydrochloric inpouring[J]. Separation and Purification Technology, 2015, 151: 177−183. doi: 10.1016/j.seppur.2015.07.043

    CrossRef Google Scholar

    [30] LIU X M, ZHANG N, SUN H H, et al. Effect of multiplex thermal activation on microstructure of red mud−coal gangue[J]. Rare Materials and Engineering, 2013, 42: 538−542.

    Google Scholar

    [31] HU Y S, HAN X Y, SUN Z Z, et al. Study on the reactivity activation of coal gangue for efficient utilization[J]. Materials, 2023, 16(18): 6321. doi: 10.3390/ma16186321

    CrossRef Google Scholar

    [32] LI L X, ZHANG Y M, ZHANG Y F, et al. The thermal activation process of coal gangue selected from Zhungeer in China[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3): 1559−1566. doi: 10.1007/s10973-016-5711-4

    CrossRef Google Scholar

    [33] LI X N, WANG H Y, ZHOU Q S, et al. Efficient separation of silica and alumina in simulated CFB slag by reduction roasting−alkaline leaching process[J]. Waste Management, 2019, 87: 798−804. doi: 10.1016/j.wasman.2019.03.020

    CrossRef Google Scholar

    [34] CAO Z, CAO Y D, DONG H J, et al. Effect of calcination condition on the microstructure and pozzolanic activity of calcined coal gangue[J]. International Journal of Mineral Processing, 2016, 146: 23−28. doi: 10.1016/j.minpro.2015.11.008

    CrossRef Google Scholar

    [35] GUO Y X, YAN K Z, CUI L, et al. Effect of Na2CO3 additive on the activation of coal gangue for alumina extraction[J]. International Journal of Mineral Processing, 2014, 131: 51−57. doi: 10.1016/j.minpro.2014.07.001

    CrossRef Google Scholar

    [36] 武丹宇, 庄故章, 刘梅, 等. 碳酸钠焙烧活化—硫酸浸出提取煤矸石中氧化铝的研究[J]. 矿产保护与利用, 2023, 43(6): 27−32.

    Google Scholar

    WU D Y, ZHUANG G Z, LIU M, et al. Study on Al2O3leaching by H2SO4 after Na2CO3 roasting activation of coal gangue[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 27−32.

    Google Scholar

    [37] YUAN S, HUANG C, BAI Z, et al. A novel utilization of high−Fe bauxite through co−roasting with coal gangue to separate iron and aluminum minerals[J]. Journal of Central South University, 2023, 30(7): 2166−2178. doi: 10.1007/s11771-023-5374-9

    CrossRef Google Scholar

    [38] 王健璋, 王明华, 宫振宇, 等. 预加热−碳热还原−磁选法提取煤矸石中的铁[J]. 材料研究与应用, 2024, 18(4): 668−673.

    Google Scholar

    WANG J Z, WANG M H, GONG Z Y, et al. Extraction of iron from coal gangue by preheating, carbon thermal reduction and magnetic separation[J]. Materials Research and Application, 2024, 18(4): 668−673.

    Google Scholar

    [39] 张又中, 车敏, 刘义青, 等. 热活化―酸浸法提取煤矸石中铝和铁的实验研究[J/OL]. 能源环境保护, 1−10[2024−11−28]. https://doi.org/10.20078/j.eep.20240201.

    Google Scholar

    ZHANG Y Z, CHE M, LIU Y Q, et al. Response surface optimization for extracting aluminium and iron from coal gangue[J/OL]. Energy Environmental Protection, 1−10[2024−11−28]. https://doi.org/10.20078/j.eep.20240201.

    Google Scholar

    [40] 李浩林, 曾德恢, 郑光亚, 等. 低温中和−加压酸浸提取煤矸石中铝铁[J]. 化工进展, 2021, 40(7): 4011−4020.

    Google Scholar

    LI H L, ZENG D H, ZHENG G Y, et al. Extraction of aluminum and iron from coal gangue by low temperature neutralization−pressure acid leaching[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 4011−4020.

    Google Scholar

    [41] ZHANG P P, HAN Z, JIA J M, et al. Occurrence and distribution of gallium, scandium, and rare earth elements in coal gangue collected from Junggar Basin, China[J]. International Journal of Coal Preparation and Utilization, 2019, 39(7): 389−402. doi: 10.1080/19392699.2017.1334645

    CrossRef Google Scholar

    [42] RUDNIK E. Coal and coal by−products as unconventional lithium sources: A review of occurrence modes and hydrometallurgical strategies for metal recovery[J]. Minerals, 2024, 14(8): 849. doi: 10.3390/min14080849

    CrossRef Google Scholar

    [43] 张磊. 煤系锂、镓和稀土的洗选分布规律及焙烧浸出研究[D]. 徐州: 中国矿业大学, 2023.

    Google Scholar

    ZHANG L. Study on washing distribution laws and roasting leaching of coal−based lithium, gallium and rare earth elements[D]. Xuzhou: China University of Mining and Technology, 2023.

    Google Scholar

    [44] FANG D, XIA Y C, LI Y G, et al. Separation and recovery of valuable carbon components and Li/Ga metals in coal gangue by using a flotation flowsheet[J]. ACS Omega, 2024, 9(12): 14336−14342. doi: 10.1021/acsomega.3c10335

    CrossRef Google Scholar

    [45] CHEN H C, ZHANG L, PAN J H, et. Study on modes of occurrence and enhanced leaching of critical metals (lithium, niobium, and rare earth elements) in coal gangue[J]. Journal of Environmental Chemical Engineering, 2022, 10(6): 108818. doi: 10.1016/j.jece.2022.108818

    CrossRef Google Scholar

    [46] 成俊伟. 煤矸石铝锂溶出和提取研究[D]. 太原: 太原理工大学, 2019.

    Google Scholar

    CHENG J W. Study on dissolution and extraction of aluminum and lithium from coal gangue[D]. Taiyuan: Taiyuan University of Technology, 2019.

    Google Scholar

    [47] 邵爽. 煤矸石热活化与硝酸浸出铝镓锂的基础研究[D]. 北京: 北京科技大学, 2023.

    Google Scholar

    SHAO S. Basic research on thermal activation and HNO3 leaching of coal gangue to extract Al/Ga/Li[D]. Beijing: University of Science and Technology Beijing, 2023.

    Google Scholar

    [48] 孙逢帅, 代世琦, 王磊, 等. 基于煤矸石中锂、镓元素赋存状态的高梯度磁选预富集试验[J]. 洁净煤技术, 2024, 30(1): 154−162.

    Google Scholar

    SUN F S, DAI S Q, WANG L, et al. Pre−enrichment experiment of high gradient magnetic separation based on lithium and gallium elements in coal gangue[J]. Clean Coal Technology, 2024, 30(1): 154−162.

    Google Scholar

    [49] WANG X L, WU J M, MA Q S, et al. Iron conversion and ammonium salt calcination whitening process and mechanism of pre−calcined coal gangue[J]. Chemical Engineering Science, 2024, 287: 119802. doi: 10.1016/j.ces.2024.119802

    CrossRef Google Scholar

    [50] QIN Q Z, GENG H H, DENG J S, et al. Al and other critical metals co−extraction from coal gangue through delamination pretreatment and recycling strategies[J]. Chemical Engineering Journal, 2023, 477: 147036. doi: 10.1016/j.cej.2023.147036

    CrossRef Google Scholar

    [51] CHEN H C, ZHANG L, PAN J H, et al. Study on modes of occurrence and selective leaching of lithium in coal gangue via grinding−thermal activation[J]. Chemical Engineering Journal, 2024, 482: 148941. doi: 10.1016/j.cej.2024.148941

    CrossRef Google Scholar

    [52] QIN Q Z, DENG J S, GENG H H, et al. An exploratory study on strategic metal recovery of coal gangue and sustainable utilization potential of recovery residue[J]. Journal of Cleaner Production, 2022, 340: 130765. doi: 10.1016/j.jclepro.2022.130765

    CrossRef Google Scholar

    [53] ZHANG W G, ZHOU H, HU Y Y, et al. Influence of curing temperature on the performance of calcined coal gangue−limestone blended cements[J]. 2024, 17(8): 1721.

    Google Scholar

    [54] WU H, CHEN C W, SONG W M, et al. High−capacity utilization of coal gangue as supplementary cementitious material, geopolymer, and aggregate: A review[J]. Construction and Building Materials, 2024, 435: 136857. doi: 10.1016/j.conbuildmat.2024.136857

    CrossRef Google Scholar

    [55] 马也, 张博杰, 杨秋宁. 不同煤矸石粗骨料替代率下混凝土的低温力学性能研究[J]. 宁夏大学学报(自然科学版), 2023, 44(1): 25−30.

    Google Scholar

    MA Y, ZHANG B J, YANG Q N. Study on the low−temperature mechanical properties of concrete under different coarse aggregate replacement ratios of coal gangue[J]. Journal of Ningxia University(Natural Science Edition), 2023, 44(1): 25−30.

    Google Scholar

    [56] HAO Y, GUO X N, YAO X H, et al. Using Chinese coal gangue as an ecological aggregate and its modification: A review[J]. Materials, 2022, 15(13): 4495.

    Google Scholar

    [57] 刘瀚卿, 白国良, 朱可凡, 等. 煤矸石混凝土抗折强度试验研究[J]. 建筑材料学报, 2023, 26(4): 346−352+377. doi: 10.3969/j.issn.1007-9629.2023.04.002

    CrossRef Google Scholar

    LIU H Q, BAI G L, ZHU K F, et al. Experimental study on flexural strength of coal gangue concrete[J]. Journal of Building Materials, 2023, 26(4): 346−352+377. doi: 10.3969/j.issn.1007-9629.2023.04.002

    CrossRef Google Scholar

    [58] YU L L, XIA J W, XIA Z, et al. Study on the mechanical behavior and micro−mechanism of concrete with coal gangue fine and coarse aggregate[J]. Construction and Building Materials, 2022, 338: 127626. doi: 10.1016/j.conbuildmat.2022.127626

    CrossRef Google Scholar

    [59] ZHOU M, DOU Y W, ZHANG Y Z, et al. Effects of the variety and content of coal gangue coarse aggregate on the mechanical properties of concrete[J]. Construction and Building Materials, 2019, 220: 386−395. doi: 10.1016/j.conbuildmat.2019.05.176

    CrossRef Google Scholar

    [60] 李少伟, 周梅, 张莉敏. 自燃煤矸石粗骨料特性及其对混凝土性能的影响[J]. 建筑材料学报, 2020, 23(2): 334−340+380.

    Google Scholar

    LI S W, ZHOU M, ZHANG L M. Properties of spontaneous combustion coal gangue coarse aggregate and its influence on concrete[J]. Journal of Building Materials, 2020, 23(2): 334−340+380.

    Google Scholar

    [61] GAO S, ZHANG S M, GUO L H. Application of coal gangue as a coarse aggregate in green concrete production: A review[J]. Materials, 2021, 14(22): 6803. doi: 10.3390/ma14226803

    CrossRef Google Scholar

    [62] 宋强, 杨玉鑫, 许世鹏, 等. 煤矸石混凝土性能及提升研究进展[J/OL]. 煤炭科学技术, 1−19[2024−10−29]. http://kns.cnki.net/kcms/detail/11.2402.TD.20241008.1748.005.html.

    Google Scholar

    SONG Q, YANG Y X, XU S P, et al. Research progress in the performance and enhancement of coal gangue concrete[J/OL]. Coal Science and Technology, 1−19[2024−10−29]. http://kns.cnki.net/kcms/detail/11.2402.TD.20241008.1748.005.html.

    Google Scholar

    [63] 阎杰, 单豆豆, 王啸天, 等. 活化煤矸石粉对煤矸石粗骨料混凝土性能的影响[J]. 兰州理工大学学报, 2024, 50(1): 139−145.

    Google Scholar

    YAN J, SHAN D D, WANG X T, et al. Influence of activated coal gangue powder on performance of coal gangue coarse aggregate concrete[J]. Journal of Lanzhou University of Technology, 2024, 50(1): 139−145.

    Google Scholar

    [64] YANG Q B, LV M X, LUO Y B. Effects of surface−activated coal gangue aggregates on properties of cement−based materials[J]. Journal of Wuhan University of Technology (Materials Science Edition), 2013, 28(6): 1118−1121. doi: 10.1007/s11595-013-0830-2

    CrossRef Google Scholar

    [65] DONG Z C, XIA J W, FAN C, et al. Activity of calcined coal gangue fine aggregate and its effect on the mechanical behavior of cement mortar[J]. Construction and Building Materials, 2015, 100: 63−69. doi: 10.1016/j.conbuildmat.2015.09.050

    CrossRef Google Scholar

    [66] 曹梦媛. 改性煤矸石骨料混凝土抗冻性能研究[D]. 西安: 西安建筑科技大学, 2023.

    Google Scholar

    CAO M Y. Research on frost resistance of modified coal gangue aggregate concrete[D]. Xi'an: Xi'an University of Architecture and Technology, 2023.

    Google Scholar

    [67] 刘灏, 李青, 黄秉章, 等. 煤矸石烧结页岩砖材的耐久性研究[J]. 材料导报, 2019, 33(S2): 229−232.

    Google Scholar

    LIU H, LI Q, HUANG B Z, et al. Study on durability of sintered shale brick from coal gangue[J]. Materials Reports, 2019, 33(S2): 229−232.

    Google Scholar

    [68] XU H L, SONG W J, CAO W B, et al. Utilization of coal gangue for the production of brick[J]. Journal of Material Cycles and Waste Management, 2017, 19: 1270−1278. doi: 10.1007/s10163-016-0521-0

    CrossRef Google Scholar

    [69] 郝贠洪, 王韫辉, 李京, 等. 利用煤矸石、铁尾矿制备固废烧结砖[J/OL]. 矿产综合利用, 1−10[2024−11−02]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231113.1037.006.html.

    Google Scholar

    HAO Y H, WANG Y H, LI J, et al. Preparation of solid waste sintered brick from coal gangue and iron tailings[J/OL]. Multipurpose Utilization of Mineral Resources, 1−10[2024−11−02]. http://kns.cnki.net/kcms/detail/51.1251.TD.20231113.1037.006.html.

    Google Scholar

    [70] 丁海萍, 侯泽健, 张怀宇. 以褐煤粉煤灰和煤矸石为原料制备透水砖的工艺研究[J]. 新型建筑材料, 2019, 46(6): 72−75.

    Google Scholar

    DING H P, HOU Z J, ZHANG H Y. Study on preparation of permeable brick from lignite fly ash and coal gangue[J]. New Building Materials, 2019, 46(6): 72−75.

    Google Scholar

    [71] 金彪, 赵亮, 汪潇, 等. 利用煤矸石、页岩、污泥制备烧结砖的研究[J]. 非金属矿, 2021, 44(5): 39−41.

    Google Scholar

    JIN B, ZHAO L, WANG X, et al. Preparation of sintered brick with sludge, shale and gangue[J]. Non−Metallic Mines, 2021, 44(5): 39−41.

    Google Scholar

    [72] WANG L, MI S Y, ZHANG J F, et al. Synergistic performance of microwave−activated coal gangue with limestone in low−carbon cement[J]. Journal of Building Engineering, 2024, 96: 110622. doi: 10.1016/j.jobe.2024.110622

    CrossRef Google Scholar

    [73] FENG S X, WANG P M, LIU X P. Effect of gangue on hydration process of Portland cement[J]. Journal of the Chinese Ceramic Society, 2010, 38(9): 1682−1687.

    Google Scholar

    [74] NIU X J, LI Q B, HU Y, et al. Properties of cement−based materials incorporating nano−clay and calcined nano−clay: A review[J]. Construction and Building Materials, 2021, 284: 122820. doi: 10.1016/j.conbuildmat.2021.122820

    CrossRef Google Scholar

    [75] GONG C C, LI D X, WANG X J, et al. Activity and structure of calcined coal gangue[J]. 2007, 22(4): 749−753.

    Google Scholar

    [76] ZHAO Y P, ZHANG Z Z, JI Y S, et al. Experimental research on improving activity of calcinated coal gangue via increasing calcium content[J]. Materials, 2023, 16(7): 2705. doi: 10.3390/ma16072705

    CrossRef Google Scholar

    [77] 顾炳伟, 王培铭. 不同产地煤矸石特征及其火山灰活性研究[J]. 煤炭科学技术, 2009, 37(12): 113−116+74.

    Google Scholar

    GU B W, WANG P M. Study on different coal rejects features and volcanic ash activity from different areas[J]. Coal Science and Technology, 2009, 37(12): 113−116+74.

    Google Scholar

    [78] 刘宇轩. 偏高岭土基煅烧煤矸石复合水泥的性能及水化研究[D]. 长沙: 湖南大学, 2022.

    Google Scholar

    LIU Y X. The performance and hydration of cement composites with thermally activated kaolinitic coal gangue[D]. Changsha: Hu’nan University, 2022.

    Google Scholar

    [79] 陈杰. 新型煤矸石基低碳LC3胶凝材料的制备与水化机理研究[D]. 武汉: 武汉理工大学, 2019.

    Google Scholar

    CHEN J. Research on preparation and hydration mechanism of new pattern coal gangue based LC3 cementitious material[D]. Wuhan: Wuhan University of Technology, 2019.

    Google Scholar

    [80] ZHAO X, ZHANG Z X, LI W X, et al. Basic principle, progress, and prospects of coal gangue ceramic proppants[J]. International Journal of Applied Ceramic Technology, 2023, 20(5): 2681−2699. doi: 10.1111/ijac.14411

    CrossRef Google Scholar

    [81] WANG X D, XU H Y, ZHANG F J, et al. Preparation of porous cordierite ceramic with acid−leached coal gangue[J]. Journal of The Korean Ceramic Society, 2020, 57(4): 447−453. doi: 10.1007/s43207-020-00032-1

    CrossRef Google Scholar

    [82] LI X Y, SHAO J H, ZHENG J Q, et al. Fabrication and application of porous materials made from coal gangue: A review[J]. International Journal of Applied Ceramic Technology, 2023, 20(4): 2099−2124. doi: 10.1111/ijac.14359

    CrossRef Google Scholar

    [83] YAN S, PAN Y M, WANG L, et al. Synthesis of low−cost porous ceramic microspheres from waste gangue for dye adsorption[J]. Journal of Advanced Ceramics, 2018, 7(1): 30−40. doi: 10.1007/s40145-017-0253-1

    CrossRef Google Scholar

    [84] ZHOU H, ZHANG M S, SUN S F, et al. Synthesis of coal gangue−based mesoporous X zeolite with soft template and its adsorption methylene blue[J]. Science of Advanced Materials, 2021, 13(11): 2157−2166. doi: 10.1166/sam.2021.4114

    CrossRef Google Scholar

    [85] 吴国天, 徐海燕, 刘丽, 等. 煤矸石中杂质含量对堇青石多孔陶瓷烧结与性能的影响[J]. 硅酸盐通报, 2015, 34(3): 670−676.

    Google Scholar

    WU G T, XU H Y, LIU L, et al. Effect of impurities in coal gangue on the sintering and properties of cordierite porous ceramic[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(3): 670−676.

    Google Scholar

    [86] DENG S W, YU J, HUANGFU Z X, et al. Iron-enhanced X-type zeolite made by coal gangue for Pb/Cd-contaminated soil remediation[J]. Journal of Soils and Sediments, 2024, 24(5): 2078−2087.

    Google Scholar

    DENG S W, YU J, HUANGFU Z X, et al. Iron-enhanced X-type zeolite made by coal gangue for Pb/Cd-contaminated soil remediation[J]. Journal of Soils and Sediments, 2024, 24(5): 2078−2087.

    Google Scholar

    [87] 高平强, 魏建雄, 陈嘉, 等. TiO2/改性煤矸石复合光催化材料的制备及其去除水体中苯酚[J]. 矿产综合利用, 2021(6): 73−80. doi: 10.3969/j.issn.1000-6532.2021.06.013

    CrossRef Google Scholar

    GAO P Q, WEI J X, CHEN J, et al. Preparation of TiO2/coal gangue composite photocatalyst and its application in phenol removal from water[J]. Multipurpose Utilization of Mineral Resources, 2021(6): 73−80. doi: 10.3969/j.issn.1000-6532.2021.06.013

    CrossRef Google Scholar

    [88] 唐双, 张雪乔, 蒋莉萍, 等. 煤矸石/BiVO4复合光催化剂的制备及其对黄药废水的降解[J]. 复合材料学报, 2023, 40(12): 6703−6717.

    Google Scholar

    TANG S, ZHANG X Q, JIANG L P, et al. Preparation of coal gangue/BiVO4 composite photocatalyst and its degradation of xanthate wastewater[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6703−6717.

    Google Scholar

    [89] HUANG Z, DENG L, CHE D F, et al. Development and technical progress in large−scale circulating fluidized bed boiler in China[J]. Frontiers in Energy, 2020, 14(4): 699−714. doi: 10.1007/s11708-020-0666-3

    CrossRef Google Scholar

    [90] ZHAO L Z, DU Y F, ZENG Y S, et al. Sulfur conversion of mixed coal and gangue during combustion in a CFB boiler[J]. Energies, 2020, 13(3): 553. doi: 10.3390/en13030553

    CrossRef Google Scholar

    [91] PENG H, WANG B F, LI W X, et al. Combustion characteristics and NO emissions during co−combustion of coal gangue and coal slime in O2/CO2 atmospheres[J]. Journal of Thermal Science, 2023, 32(1): 457−467. doi: 10.1007/s11630-022-1742-2

    CrossRef Google Scholar

    [92] LI Y Q, REN X F, ZHANG Y B, et al. Study on the thermal reaction characteristics and kinetics of coal and coal gangue coexisting spontaneous combustion[J]. Energy, 2024, 288: 129781. doi: 10.1016/j.energy.2023.129781

    CrossRef Google Scholar

    [93] XU Y H, WU H J, DONG Z F, et al. Life cycle energy use efficiency and greenhouse gas emissions of circulating fluidized bed coal−fired plant with coal gangue and coal co−combustion[J]. Environment, Development and Sustainability, 2023, 26(8): 20049−20071. doi: 10.1007/s10668-023-03454-z

    CrossRef Google Scholar

    [94] 周宇, 彭文国, 马清旺, 等. 煤矸石颗粒掺混刺梨果渣共燃烧特性[J]. 洁净煤技术, 2024, 30(S1): 334−341.

    Google Scholar

    ZHOU Y, PENG W G, MA Q W, et al. Study on the co−combustion characteristics of coal gangue particles with Rosa roxburghii Tratt pomace[J]. Clean Coal Technology, 2024, 30(S1): 334−341.

    Google Scholar

    [95] ZHANG Y Y, ZHAO J T, MA Z B, et al. Effect of oxygen concentration on oxy−fuel combustion characteristic and interactions of coal gangue and pine sawdust[J]. Waste Management, 2019, 87: 288−294. doi: 10.1016/j.wasman.2019.01.040

    CrossRef Google Scholar

    [96] 李昊, 刘海玉, 乔晓磊, 等. 生物质与煤矸石(煤系高岭土)共燃行为及固定碱金属特性研究[J]. 动力工程学报, 2024, 44(5): 703−709.

    Google Scholar

    LI H, LIU H Y, QIAO X L, et al. Study on co−combustion behaviour of biomass with gangue (coal kaolin) and retention characteristics of alkali metals[J]. Journal of Chinese Society of Power Engineering, 2024, 44(5): 703−709.

    Google Scholar

    [97] GUO Y M, ZHANG J X, LI M, et al. Preventing water inrush hazards in coal mines by coal gangue backfilling in gobs: Influences of the particle size and stress on seepage characteristics[J]. Environmental Science and Pollution Research, 2023, 30: 104374−104387. doi: 10.1007/s11356-023-29775-0

    CrossRef Google Scholar

    [98] WANG C X, SHEN B T, CHEN J T, et al. Compression characteristics of filling gangue and simulation of mining with gangue backfilling: An experimental investigation[J]. Geomechanics and Engineering, 2020, 20(6): 485−495.

    Google Scholar

    [99] 刘帆俞, 宋慧平, 吴海滨, 等. 煤矸石土壤化利用与土壤改良剂研究进展[J]. 矿产保护与利用, 2023, 43(6): 14−26.

    Google Scholar

    LIU F Y, SONG H P, WU H B, et al. Research progress on the utilization of coal gangue for soil remediation and as soil amendment agents[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 14−26.

    Google Scholar

    [100] 朱磊, 古文哲, 袁超峰, 等. 煤矸石浆体充填技术应用与展望[J]. 煤炭科学技术, 2024, 52(4): 93−104. doi: 10.12438/cst.2023-1919

    CrossRef Google Scholar

    ZHU L, GU W Z, YUAN C F, et al. Application and prospect of coal gangue slurry filling technology[J]. Coal Science and Technology, 2024, 52(4): 93−104. doi: 10.12438/cst.2023-1919

    CrossRef Google Scholar

    [101] LI L, HUANG Q X, ZUO X, et al. Study on the slurry diffusion law of fluidized filling gangue in the caving goaf of thick coal seam fully mechanized caving mining[J]. Energies, 2022, 15(21): 8164. doi: 10.3390/en15218164

    CrossRef Google Scholar

    [102] 刘亮平, 张凯, 杨彦生, 等. 神东矿区煤矸石无害化填埋注浆技术及应用[J]. 洁净煤技术, 2024, 30(S1): 547−552.

    Google Scholar

    LIU L P, ZHANG K, YANG Y S, et al. Coal gangue harmless landfill grouting technology and application in Shendong mining area[J]. Clean Coal Technology, 2024, 30(S1): 547−552.

    Google Scholar

    [103] LIU X H, ZHANG J, LI Q, et al. Preparation of technosol based on coal gangue and its impact on plant growth in coal mining area[J]. Journal of Cleaner Production, 2024, 467: 142998. doi: 10.1016/j.jclepro.2024.142998

    CrossRef Google Scholar

    [104] 邢成江, 邢丽萍. 煤矸石覆盖农田好处多[J]. 山西农业, 1994(9): 30.

    Google Scholar

    XING C J, XING L P. Covering farmland with coal gangue has many advantages[J]. Shanxi Agriculture, 1994(9): 30.

    Google Scholar

    [105] 王忠波, 张金博, 王斌, 等. 煤矸石填充对沟道导排水性能和土壤肥力及重金属污染的影响[J]. 农业工程学报, 2019, 35(24): 289−297.

    Google Scholar

    WANG Z B, ZHANG J B, WANG B, et al. Effects of coal gangue filling on drainage performance, soil fertility and heavy metal pollution in erosion gully[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 289−297.

    Google Scholar

    [106] 段永红, 赵景逵. 煤矸石山覆盖种植对植物根系的影响[J]. 煤矿环境保护, 1999(1): 41−43.

    Google Scholar

    DUAN Y H, ZHAO J K. The influence of the covered planting on plant roots and reclamation measures on coal gob mountains[J]. Energy Environmental Protection, 1999(1): 41−43.

    Google Scholar

    [107] 马柳. 以煤矸石为基质的生菜种植土壤改良配比研究[D]. 沈阳: 辽宁大学, 2021.

    Google Scholar

    MA L. Study on the ratio of soil improvement for lettuce planting with coal gangue as substrate[D]. Shenyang: Liaoning University, 2021.

    Google Scholar

    [108] 刘元生, 陈祖拥, 刘方, 等. 白云岩砂改良煤矸石基质对黑麦草生长及重金属淋溶影响[J]. 中国水土保持科学(中英文), 2023, 21(5): 138−145.

    Google Scholar

    LIU Y S, CHEN Z Y, LIU F, et al. Effect of dolomite sand−improved coal gangue substrate on ryegrass growth and heavy metal leaching[J]. Science of Soil and Water Conservation, 2023, 21(5): 138−145.

    Google Scholar

    [109] 范秋运, 张超英, 耿玉清, 等. 添加粉煤灰对煤矸石基质性质和植物生长的影响[J]. 中国水土保持科学(中英文), 2022, 20(5): 85−92.

    Google Scholar

    FAN Q Y, ZHANG C Y, GENG Y Q, et al. Effects of fly ash application on the properties of coal gangue matrix and plant growth[J]. Science of Soil and Water Conservation, 2022, 20(5): 85−92.

    Google Scholar

    [110] 关禹. 煤矸石的肥效及重金属活性钝化的研究[D]. 阜新: 辽宁工程技术大学, 2015.

    Google Scholar

    GUAN Y. The study on fertilizer efficiency and passivation on heavy metals activated of coal gangue[D]. ‌‌Fuxin: Liaoning Technical University, 2015.

    Google Scholar

    [111] 王丽艳, 张成梁, 韩有志, 等. 煤矸石山不同植被恢复模式对土壤侵蚀和养分流失的影响[J]. 中国水土保持科学, 2011, 9(2): 93−99+105. doi: 10.3969/j.issn.1672-3007.2011.02.017

    CrossRef Google Scholar

    WANG L Y, ZHANG C L, HAN Y Z, et al. Effects of different vegetation restoration patterns in gangue pile on soil erosion and nutrient loss[J]. Science of Soil and Water Conservation, 2011, 9(2): 93−99+105. doi: 10.3969/j.issn.1672-3007.2011.02.017

    CrossRef Google Scholar

    [112] 郭爱科. 煤矸石混合土壤水分入渗与蒸发特性试验及模拟研究[D]. 邯郸: 河北工程大学, 2022.

    Google Scholar

    GUO A K. Experimental and simulation study on water infiltration and evaporation characteristics of coal gangue mixed soil[D]. Handan: Hebei University of Engineering, 2022.

    Google Scholar

    [113] 邵玉飞, 马建, 陈欣. 利用煤矸石制作水稻育苗基质的研究[J]. 农业资源与环境学报, 2017, 34(6): 555−561.

    Google Scholar

    SHAO Y F, MA J, CHEN X. Rice seedling substrate produced by coal gangue[J]. Journal of Agricultural Resources and Environment, 2017, 34(6): 555−561.

    Google Scholar

    [114] 李娜. 秸秆与煤矸石混配基质的育苗性能研究[D]. 沈阳: 沈阳建筑大学, 2020.

    Google Scholar

    LI N. Study on the seedling performance of the mixture of straw and gangue[D]. Shenyang: Shenyang Jianzhu University, 2020.

    Google Scholar

    [115] 任晓玲, 周蕙昕, 高明, 等. 煤矸石肥料的研究进展[J]. 中国煤炭, 2021, 47(1): 103−109. doi: 10.3969/j.issn.1006-530X.2021.01.016

    CrossRef Google Scholar

    REN X L, ZHOU H X, GAO M, et al. Research progress of coal gangue fertilizer[J]. China Coal, 2021, 47(1): 103−109. doi: 10.3969/j.issn.1006-530X.2021.01.016

    CrossRef Google Scholar

    [116] MOTESHAREZADEH B, AHMADIYAN E, ALIKHANI H A, et al. The use of coal gangue as a cultivation bed conditioner in forage maize inoculated with arbuscular mycorrhizal fungi[J]. Communications in Soil Science and Plant Analysis, 2017, 48(11): 1266−1279. doi: 10.1080/00103624.2017.1322602

    CrossRef Google Scholar

    [117] GU T Y, MAO Y Y, CHEN C, et al. Diversity of arbuscular mycorrhiza fungi in rhizosphere soil and roots in vetiveriazizanioides plantation chronosequence in coal gangue heaps[J]. Symbiosis, 2022, 86(1): 111−122. doi: 10.1007/s13199-022-00829-0

    CrossRef Google Scholar

    [118] BAI D S, WANG Y W, YANG X, et al. Effects of long−term (10 years) remediation of Caragana on soil enzyme activities, heavy metals, microbial diversity and metabolic spectrum of coal gangue[J]. Ecological Engineering, 2022, 181: 106679. doi: 10.1016/j.ecoleng.2022.106679

    CrossRef Google Scholar

    [119] LU Z J, WANG H S, WANG Z X, et al. Critical steps in the restoration of coal mine soils: Microbial-accelerated soil reconstruction[J]. Journal of Environmental Management, 2024, 368: 122200.

    Google Scholar

    [120] 许旭旦. 黄腐酸(FA)研究的意义与成就[J]. 腐植酸, 1996(1): 32−34.

    Google Scholar

    XU X D. Significance and achievements of fulvic acid (FA) research[J]. Humic Acid, 1996(1): 32−34.

    Google Scholar

    [121] 刘信平, 吴少尉, 张驰. 富硒煤矸石活化技术及煤矸石硒肥高效利用研究[J]. 植物营养与肥料学报, 2020, 26(8): 1526−1535. doi: 10.11674/zwyf.19260

    CrossRef Google Scholar

    LIU X P, WU S W, ZHANG C. Study on activation technology of selenium−rich coal gangue and efficient utilization of selenium−enriched coal gangue fertilizer[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(8): 1526−1535. doi: 10.11674/zwyf.19260

    CrossRef Google Scholar

    [122] FAN Y, JIA H Q, PINO V, et al. A Si−K−based amendment prepared by coal gangue and plant ash could improve the growth of maize plants in saline soils[J]. Journal of Soil Science and Plant Nutrition, 2023, 24: 761−774.

    Google Scholar

    [123] LUO C, LI S H, REN P Y, et al. Enhancing the carbon content of coal gangue for composting through sludge amendment: A feasibility study[J]. Environmental Pollution, 2024, 348: 123439. doi: 10.1016/j.envpol.2024.123439

    CrossRef Google Scholar

    [124] 苏迪. 煤矸石基人造土壤制备工艺及性能研究[D]. 太原: 山西大学, 2021.

    Google Scholar

    SU D. Study on preparation technology and properties of artificial soil based on coal gangue[D]. Taiyuan: Shanxi University, 2021.

    Google Scholar

    [125] ZHANG Y, LIU Y Z, LIU J, et al. Control mechanism of the migration of heavy metal ions from gangue backfill bodies in mined−out areas[J]. Frontiers in Earth Science, 2023, 10: 1090799. doi: 10.3389/feart.2022.1090799

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(2)

Tables(3)

Article Metrics

Article views(130) PDF downloads(4) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint