Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 4
Article Contents

HE Guoqing, CHEN Junzhi, REN Chunfang, XIONG Chaolin, WANG Shengdi. Research on the Influence Factors of Water−bearing Tunnel Stability Based on Fluid−solid Coupling Theory[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 102-110. doi: 10.13779/j.cnki.issn1001-0076.2024.04.012
Citation: HE Guoqing, CHEN Junzhi, REN Chunfang, XIONG Chaolin, WANG Shengdi. Research on the Influence Factors of Water−bearing Tunnel Stability Based on Fluid−solid Coupling Theory[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 102-110. doi: 10.13779/j.cnki.issn1001-0076.2024.04.012

Research on the Influence Factors of Water−bearing Tunnel Stability Based on Fluid−solid Coupling Theory

More Information
  • This study investigates the influence of groundwater seepage on the stability of the peripheral rock of a water−bearing roadway. The sensitivity of the key factors (burial depth, peripheral rock strength, and water pressure) influencing the stability of the peripheral rock of the water−bearing roadway, as well as the stability of the peripheral rock under different factor conditions, were comprehensively analyzed based on the theory of fluid−solid coupling and the method of combining orthogonal experiments and numerical simulation with FLAC3D, taking a roadway in a metal mine in Yunnan Province as the background. The results showed that the sensitivity of the deformation factors of the roadway roof and two sidewalls under the effect of fluid−solid coupling was in descending order of burial depth, water pressure, and strength of surrounding rock. The smallest combination affecting the deformation of the roof and two sidewalls was water pressure of 0 MPa, perimeter rock strength of 80 MPa, depth of 200 m the largest combination was water pressure of 0.3 MPa, perimeter rock strength of 20 MPa, depth of 500 m. The two sidewalls of the roadway were affected by pore water pressure and compressive stress concentration, which could be used as a reference for selecting support and reinforcement methods in the roadway.

  • 加载中
  • [1] 李桂臣, 杨森, 孙元田, 等. 复杂条件下巷道围岩控制技术研究进展[J]. 煤炭科学技术, 2022, 50(6): 29−45.

    Google Scholar

    LI G C, YANG S, SUN Y T, et al. Research progress on control technology of tunnel surrounding rock under complex conditions[J]. Coal Science and Technology, 2022, 50(6): 29−45.

    Google Scholar

    [2] 赵增辉, 杨鹏, 张明忠, 等. 水环境和非均匀地压联合作用下弱胶结软岩巷道围岩稳定性解析[J]. 采矿与安全工程学报, 2022, 39(1): 126−135.

    Google Scholar

    ZHAO Z H, YANG P, ZHANG M Z, et al. Analysis of the stability of weak cemented soft rock roadway surrounding rock under the combined action of water environment and non−uniform ground pressure[J]. Journal of Mining and Safety Engineering, 2022, 39(1): 126−135.

    Google Scholar

    [3] 赵术江, 李东发, 袁越. 含水软岩特大断面巷道交岔点稳定性研究[J]. 煤炭科学技术, 2013, 41(8): 30−34.

    Google Scholar

    ZHAO S J, LI D F, YUAN Y. Research on the stability of intersection points in extra large section tunnels in water bearing soft rock[J]. Coal Science and Technology, 2013, 41(8): 30−34.

    Google Scholar

    [4] 张春阳, 曹平, 靳瑾, 等. 金川矿区深部巷道围岩流固耦合稳定性数值模拟[J]. 科技导报, 2013, 31(33): 31−36.

    Google Scholar

    ZHANG C Y, CAO P, JIN J, et al. Numerical simulation of fluid structure coupling stability of deep roadway surrounding rock in Jinchuan mining area[J]. Science and Technology Journal, 2013, 31(33): 31−36.

    Google Scholar

    [5] 王飞, 朱洪利, 张建贞. 基于流固耦合理论的富水巷道稳定性数值模拟[J]. 煤矿安全, 2016, 47(4): 219−221+225.

    Google Scholar

    WANG F, ZHU H L, ZHANG J Z. Numerical simulation of stability of water rich tunnels based on fluid structure coupling theory[J]. Coal Mine Safety, 2016, 47(4): 219−221+225.

    Google Scholar

    [6] 姚强岭, 李学华, 陈庆峰. 含水砂岩顶板巷道失稳破坏特征及分类研究[J]. 中国矿业大学学报, 2013, 42(1): 50−56.

    Google Scholar

    YAO Q L, LI X H, CHEN Q F. Characteristics and classification of instability and failure of water bearing sandstone roof tunnels[J]. Journal of China University of Mining and Technology, 2013, 42(1): 50−56.

    Google Scholar

    [7] 尹胜, 周宗红, 张晶, 等. 地下掘进巷道富水破碎围岩锚杆支护参数优化[J]. 有色金属工程, 2024, 14(2): 119−127.

    Google Scholar

    YIN S, ZHOU Z H, ZHANG J, et al. Optimization of anchor rod support parameters for water rich and fractured surrounding rock in underground excavation tunnels[J]. Nonferrous Metals Engineering, 2024, 14(2): 119−127.

    Google Scholar

    [8] 陈康, 杨张杰, 王福海, 等. 富水弱胶结顶板巷道支护优化设计研究[J]. 煤炭工程, 2022, 54(11): 79−83.

    Google Scholar

    CHEN K, YANG Z J, WANG F H, et al. Optimization design of support for weak cemented roof roadway with rich water[J]. Coal Engineering, 2022, 54(11): 79−83.

    Google Scholar

    [9] 王正胜, 李建忠, 林健, 等. 深部高应力富水黏土软岩大巷底鼓机理及控制技术[J]. 煤炭科学技术, 2021, 49(7): 71−78.

    Google Scholar

    WANG Z S, LI J Z, LIN J, et al. The mechanism and control technology of bottom bulging in deep high stress and water rich clay soft rock roadway[J]. Coal Science and Technology, 2021, 49(7): 71−78.

    Google Scholar

    [10] 郝明, 潘夏辉, 张勃阳. 淋水条件下弱胶结软岩巷道变形破坏特征与支护技术[J]. 煤矿安全, 2021, 52(12): 219−228.

    Google Scholar

    HAO M, PAN X H, ZHANG B Y. Deformation and failure characteristics and support technology of weakly cemented soft rock tunnels under water pouring conditions[J]. Coal Mine Safety, 2021, 52(12): 219−228.

    Google Scholar

    [11] 殷齐浩, 李春廷, 李廷春, 等. 富水软岩巷道稳定性控制技术研究[J]. 矿业安全与环保, 2020, 47(1): 12−16.

    Google Scholar

    YIN Q H, LI C T, LI T C, et al. Research on stability control technology for rich water soft rock tunnels[J]. Mining Safety and Environmental Protection, 2020, 47(1): 12−16.

    Google Scholar

    [12] 沙成满, 王星, 杨慧敏. 基于流固耦合的充水采空区渗流模型[J]. 东北大学学报(自然科学版), 2023, 44(4): 551−557.

    Google Scholar

    SHA C M, WANG X, YANG H M. Seepage model of water filled goaf based on fluid structure coupling[J]. Journal of Northeastern University (Natural Science Edition), 2023, 44(4): 551−557.

    Google Scholar

    [13] 刘文博, 张树光, 林晓楠, 等. 基于加速蠕变改进的巷道围岩蠕变模型[J]. 中国安全科学学报, 2019, 29(5): 124−130.

    Google Scholar

    LIU W B, ZHANG S G, LIN X N, et al. A creep model of tunnel surrounding rock based on accelerated creep improvement[J]. Chinese Journal of Safety Sciences, 2019, 29(5): 124−130.

    Google Scholar

    [14] 刘少伟, 王伟, 王强, 等. 缓倾斜煤层沿含水采空区掘巷煤柱稳定性研究[J]. 煤炭科学技术, 2020, 48(6): 78−87.

    Google Scholar

    LIU S W, WANG W, WANG Q, et al. Study on the stability of coal pillars during excavation along water bearing goaf in gently inclined coal seams[J]. Coal Science and Technology, 2020, 48(6): 78−87

    Google Scholar

    [15] 李竹, 樊建宇, 冯国瑞, 等. 隔水煤柱采动渗流耦合失效特征及其合理宽度[J]. 煤炭学报, 2023, 48(11): 4011−4023.

    Google Scholar

    LI Z, FAN J Y, FENG G R, et al. Failure characteristics and reasonable width of coupled seepage during water blocking coal pillar mining[J]. Journal of Coal Science, 2023, 48(11): 4011−4023.

    Google Scholar

    [16] 樊戬. 基于流固耦合极限分析的富水隧道稳定性研究[D]. 重庆: 重庆交通大学, 2023.

    Google Scholar

    FAN J. Stability study of rich water tunnel based on fluid structure coupling limit analysis[D]. Chongqing: Chongqing Jiaotong University, 2023.

    Google Scholar

    [17] 付玉凯, 鞠文君. 影响软岩巷道变形因素的正交数值模拟试验研究[J]. 采矿与安全工程学报, 2013, 30(6): 812−816+827.

    Google Scholar

    FU Y K, JU W J. Orthogonal numerical simulation experimental study on factors affecting deformation of soft rock tunnels[J]. Journal of Mining and Safety Engineering, 2013, 30(6): 812−816+827.

    Google Scholar

    [18] 王运敏. 现代采矿手册[M]. 北京: 冶金工业出版社, 2011.

    Google Scholar

    WANG Y M. Modern mining handbook[M]. Beijing: Metallurgical Industry Press, 2011

    Google Scholar

    [19] 陈魁. 试验设计与分析[M]. 北京: 清华大学出版社, 2005.

    Google Scholar

    CHEN K. Experimental design and analysis[M]. Beijing: Tsinghua University Press, 2005.

    Google Scholar

    [20] 孙艺丹, 杨逾, 孙博一, 等. 动力扰动下巷道围岩变形影响因素敏感性分析[J]. 煤炭科学技术, 2020, 48(5): 57−62.

    Google Scholar

    SUN Y D, YANG Y, SUN B Y, et al. Sensitivity analysis of influencing factors on deformation of roadway surrounding rock under dynamic disturbance[J]. Coal Science and Technology, 2020, 48(5): 57−62.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(7)

Article Metrics

Article views(190) PDF downloads(0) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint