Citation: | XU Peiliang, HOU Kepeng. Detonation Crack Propagation Behavior of Short Delay Blasting Between Holes[J]. Conservation and Utilization of Mineral Resources, 2024, 44(4): 1-8. doi: 10.13779/j.cnki.issn1001-0076.2024.04.001 |
In order to understand the influence of the delay time between holes on the rock breaking effect of different rocks, a numerical model of double−hole blasting was established by means of numerical simulation using limestone from a mine as an example, and 34 parameters of the RHT constitutive model of limestone were calibrated. The simulation results showed that the stress enhancement phenomenon increased with the increase of delay time, but when Δt increased to 80 μs, the stress enhancement caused by the superposition between holes can be ignored. The crack propagation area of the pre−blasting hole increased with the increase of the delay time, the crack propagation area of the post−blasting hole decreased with the decrease of the delay time, and the width of the crack propagation between the holes increased with the increase of the delay time. The research results provide a design basis for the popularization and application of the precise delay performance of digital detonators.
[1] | LI P, LU W, WU X, et al. Spectral prediction and control of blast vibrations during the excavation of high dam abutment slopes with millisecond−delay blasting[J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 116−124. doi: 10.1016/j.soildyn.2017.01.007 |
[2] | YANG J, LU W, JIANG Q. et al. Frequency comparison of blast−induced vibration per delay for the full face millisecond delay blasting in underground opening excavation[J]. Tunnelling and Underground Space Technology, 2016, 51: 189−201. doi: 10.1016/j.tust.2015.10.036 |
[3] | 杨立云, 董鹏翔, 王启睿, 等. 爆生气体驱动双共线Ⅰ型裂纹的扩展行为[J]. 矿业科学学报, 2023, 8(4): 538−547. YANG L Y, DONG P X, WANG Q R, et al. Propagation behavior of two collinear mode Ⅰ cracks driven by explosive gas[J]. Journal of Mining Science and Technology, 2023, 8(4): 538−547. |
[4] | CUNNINGHAM, C. V. B. The Kuz−Ram fragmentation model – 20 years on[C]//R Holmberg. Brighton conference proceedings. St. Julians: EFEE, 2005: 202–210. |
[5] | ELORANTA J, PALANGIO T, PALANGIO T C, et al. Size matters on the Mesabi Range[C]//Proceedings of the 3rd Annual Conference of ISEE on Explosives and Blasting Technique. Nashville: TN, 2007: 387–398. |
[6] | 吴钦正, 李润然, 李桂林, 等. 基于JKSimBlast软件的露天矿爆破毫秒延期时间优化[J]. 黄金科学技术, 2021, 29(6): 854−862. doi: 10.11872/j.issn.1005-2518.2021.06.066 WU Q Z, LI R F, LI G L, et al. Optimization of millisecond delay time of open−pit mine blasting based on JKSimBlast software[J]. Gold Science and Technology, 2021, 29(6): 854−862. doi: 10.11872/j.issn.1005-2518.2021.06.066 |
[7] | SHAIB ABDULAZEEZ SHEHU, KUDIRAT OZIOHU YUSUF, M H M HASHIM. Comparative study of WipFrag image analysis and Kuz−Ram empirical model in granite aggregate quarry and their application for blast fragmentation rating[J]. Geomechanics and Geoengineering 2022,17(1): 197−205. |
[8] | 刘翔宇, 龚敏, 杨仁树, 等. 隧道周边孔毫秒延时爆破围岩损伤数值分析研究[J]. 振动与冲击, 2023, 42(24): 9−15. LIU X Y, GONG M, YANG R S, et al. Numerical analysis of surrounding rock damage caused by millisecond delay blasting in tunnel surrounding holes[J].Vibration and impact, 2023, 42 (24): 9−15. |
[9] | 李清, 于强, 张迪, 等. 地铁隧道精确控制爆破延期时间优选及应用[J]. 振动与冲击, 2018, 37(13): 135−140+170. LI Q, YU Q, ZHANG D, et al. Optimization and application of precise control blasting delay time for subway tunnels[J]. Vibration and Impact, 2018, 37 ( 13 ) : 135−140 + 170. |
[10] | 李顺波, 杨军, 李长军. 基于精确延时的基坑开挖爆破振动控制研究[J]. 爆破器材, 2015, 44(6): 9−14. doi: 10.3969/j.issn.1001-8352.2015.06.003 LI S B, YANG J, LI C J. Study on blasting vibration control of foundation pit excavation based on accurate delay[J]. Blasting Equipment, 2015, 44(6): 9−14. doi: 10.3969/j.issn.1001-8352.2015.06.003 |
[11] | DING J, CAO H, JIANG N, et al. Numerical optimization and field test of smooth blasting parameters for diversion tunnel[J]. Safety and Environmental Engineering, 2023, 30(5): 46−53. |
[12] | 兰小平. 数码电子雷管逐孔起爆网路延时时间应用探讨[J]. 工程爆破, 2019, 25(2): 57−66. doi: 10.3969/j.issn.1006-7051.2019.02.010 LAN X P. Application of delay time of digital electronic detonator hole−by−hole initiation network[J]. Engineering Blasting, 2019, 25(2): 57−66. doi: 10.3969/j.issn.1006-7051.2019.02.010 |
[13] | 高腾飞, 张智宇, 王鑫尧, 等. 城镇浅孔爆破逐孔起爆合理延时的研究[J]. 爆破, 2016, 33(1): 78−83. GAO T F, ZHANG Z Y, WANG X Y , et al. Study on reasonable delay of hole−by−hole blasting in urban shallow hole blasting[J]. Blasting, 2016, 33(1): 78−83. |
[14] | 李祥龙, 张其虎, 王建国, 等. 地下爆破精确延时逐孔起爆减振试验研究[J]. 黄金科学技术, 2021, 29(3): 401−410. LI X L, ZHANG Q H, WANG J G, et al. Experimental study on vibration reduction by precise delay hole−by−hole initiation of underground blasting[J]. Golden Science and Technology, 2021, 29(3): 401−410. |
[15] | 王宇涛. 基于RHT本构的岩体爆破破碎模型研究[D]. 北京: 中国矿业大学(北京), 2015. WANG Y T. Study on rock mass blasting fragmentation model based on RHT constitutive[D]. Beijing: China University of Mining and Technology (Beijing), 2015. |
[16] | WANG H C, WANG Z L, WANG J G, et al. Effect of confining pressure on damage accumulation of rock under repeated blast loading[J]. International Journal of Impact Engineering, 2021, 156: 103961. doi: 10.1016/j.ijimpeng.2021.103961 |
[17] | RIEDEL W, KAWAI N, KONDO K I. Numerical assessment for impact strength measurements in concrete materials[J]. International Journal of Impact Engineering, 2009, 36(2): 283−293. doi: 10.1016/j.ijimpeng.2007.12.012 |
[18] | M. M. DEHGHAN BANADAKI, B. Mohanty. Numerical simulation of stress wave induced fractures in rock[J]. International Journal of Impact Engineering, 2012, 40/41: 16−25. |
Rock processing and finished products
Fitting diagram of failure surface parameters
Model diagram
Stress cloud diagram of pre−splitting blasting under two groups of delay time
Peak stress of measuring points under different delay time
Damage cloud diagram of double−hole blasting as Δt = 60 μs
Damage cloud diagram of double−hole blasting as Δt = 300 μs
Binary damage results under different delay time