Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2024 Vol. 44, No. 2
Article Contents

MENG Fanwei, TU Quanping, XIANG Aihua, LIU Kun, SHI Qing. Soilization Improvement and Cultivation Experiment of Molybdenum Tailings in Hebei Province[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2024.02.015
Citation: MENG Fanwei, TU Quanping, XIANG Aihua, LIU Kun, SHI Qing. Soilization Improvement and Cultivation Experiment of Molybdenum Tailings in Hebei Province[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2): 106-114. doi: 10.13779/j.cnki.issn1001-0076.2024.02.015

Soilization Improvement and Cultivation Experiment of Molybdenum Tailings in Hebei Province

More Information
  • The molybdenum tailings in Hebei Province had been improved through simple mechanical mixing with low−cost additives, facilitating their utilization for soilization. Through single−factor and composite−amended tests, the water retention rate, pH value, and cation exchange capacity (CEC) of molybdenum tailings were significantly enhanced. Results indicated the application of a composite amendment agent, consisting of farmyard manure, montmorillonite, polyacrylamide (PAM), and citric acid, to the molybdenum tailings has significantly enhanced their properties. The saturated water absorption rate of the molybdenum tailings increased to 61.1%, and both the evaporation rate and decline rate of the moisture was significantly reduced. The cation exchange capacity (CEC) reached 10.15 cmol/kg, and the pH value was lowered to 8.08, achieving a level suitable for agricultural cultivation. Additionally, a pot experiment was conducted to assess the growth effect of improved molybdenum tailings on plants. Compared to the initial molybdenum tailings, the height and quality of plant growth in composite−amended molybdenum tailings increased by 77.4% and 98.1%, respectively. Furthermore, after 15 days of plant growth, the water retention, pH value, and CEC of the composite−amended molybdenum tailings reached levels comparable to those of normal soil, confirming the successful transformation of molybdenum tailings into plantable soil.

  • 加载中
  • [1] 王长龙, 叶鹏飞, 张凯帆, 等. 钼尾矿复合胶凝材料的制备及其水化机理研究[J]. 金属矿山, 2020(9): 41−47.

    Google Scholar

    WANG C L, YE P F, ZHANG K F, et al. Study on preparation and hydration mechanism of composite cementitious materials using molybdenum tailings[J]. Metal Mine, 2020(9): 41−47.

    Google Scholar

    [2] 伍红强, 刘诚, 陈延飞. 我国钼尾矿资源综合利用研究进展[J]. 金属矿山, 2018(8): 169−174.

    Google Scholar

    WU H Q, LIU C, CHEN Y F. Research progress of and comprehensive utilized on molybdenum tailings resources in China[J]. Metal Mine, 2018(8): 169−174.

    Google Scholar

    [3] 马伟鸣, 柴文翠, 马鹏举, 等. 钼尾矿中有价矿物综合回收研究进展[J/OL]. 化工矿物与加工: 1−11[2024−03−19]. http://kns.cnki.net/kcms/detail/32.1492.TQ.20240112.1435.002.html.

    Google Scholar

    MA W M, CAI W C, MA P J, et al. Research progress of comprehensive recovery of valuable minerals from molybdenum tailing[J]. Industrial Minerals & Processing: 1−11[2024−03−19]. http://kns.cnki.net/kcms/detail/32.1492.TQ.20240112.1435.002.html.

    Google Scholar

    [4] 张艳佳, 付士峰, 张广田, 等. 钼尾矿粉对水泥基材料强度和微观结构影响研究[J]. 金属矿山, 2023(4): 253−259.

    Google Scholar

    ZHANG Y J, FU S F, ZHANG G T, et al. Study on the influence of molybdenum tailings powder on the strength and microstructure of cement−based materials[J]. Metal Mine, 2023(4): 253−259.

    Google Scholar

    [5] 徐晓萍, 高玉德, 孟庆波. 利用某钼尾矿回收钼及制备硅肥的研究[J]. 材料研究与应用, 2018, 12(1): 55−58+63. doi: 10.3969/j.issn.1673-9981.2018.01.011

    CrossRef Google Scholar

    XU X P, GAO Y D, MENG Q B. Research and application of new technology of wolframite and scheelite mixed flotation[J]. Materials Research and Application, 2018, 12(1): 55−58+63. doi: 10.3969/j.issn.1673-9981.2018.01.011

    CrossRef Google Scholar

    [6] 魏伟明, 邱建锋, 汪磊, 等. 尾矿基发泡水泥隔热材料性能增强工艺研究[J]. 矿产保护与利用, 2021, 41(4): 119−123.

    Google Scholar

    WEI W M, QIU J F, WANG L, et al. Study on performance enhancement process of tailings−based foamed cement insulation material[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 119−123.

    Google Scholar

    [7] 宗传娇. 铁尾矿土壤化利用物理化学改良技术研究[D]. 济南: 山东大学, 2018.

    Google Scholar

    ZONG C J. Study on physical and chemical improvement of iron tailings in soil utilization[D]. Ji’nan: Shandong university, 2018.

    Google Scholar

    [8] 王艳超, 李玉灵, 王辉, 等. 不同植被恢复模式对铁尾矿微生物和酶活性的影响[J]. 生态学杂志, 2008(10): 1826−1829.

    Google Scholar

    WANG Y C, LI Y L, WANG H. Effect of vegetation restoration pattern on microbial quantity and enzyme activity in iron tailings[J]. Chinese Journal of Ecology, 2008(10): 1826−1829.

    Google Scholar

    [9] 石娟华, 袁玉欣, 李玉灵, 等. 铁尾矿坝沙棘、桑树人工林生物量分配及根系分布研究[J]. 河北农业大学学报, 2008, 31(4): 30−35+46.

    Google Scholar

    SHI J H, YUAN Y X, LI Y L, et al. Study on biomass and root distribution of the mixed plantations composed of hippophae rhamnoides L. and Morus alba L. planted on iron tailing[J]. Journal of agricultural university of Hebei, 2008, 31(4): 30−35+46.

    Google Scholar

    [10] 艾艳君, 谷海红. 尾矿生态修复研究进展[J]. 世界有色金属, 2016(3): 88−90.

    Google Scholar

    AI Y J, GU H H. Progress of ecological remediation of tailings[J]. World Nonferrous Metals, 2016(3): 88−90.

    Google Scholar

    [11] 朱丽瑶, 许永利, 张俊英, 等. 不同改良剂修复铁尾矿的研究[J]. 广东化工, 2023, 50(15): 126−130.

    Google Scholar

    ZHU L Y, XU Y L, ZHANG J Y, et al. Study on repairing iron tailings with different amendments[J]. Guangdong Chemical Industry, 2023, 50(15): 126−130.

    Google Scholar

    [12] 盘丽珍, 许中坚, 伍泽广, 等. 大豆秸秆生物炭对铅锌尾矿污染土壤的修复作用[J]. 水土保持学报, 2018, 32(5): 325−329+334.

    Google Scholar

    PAN L Z, XU Z J, WU Z G, et al. Remediation of soil polluted by lead−zinc tailings using soybean straw biochar[J]. Journal of soil and water conservation, 2018, 32(5): 325−329+334.

    Google Scholar

    [13] 张东, 龙军, 杨微, 等. 萤石型铅锌尾矿渣的基质改良与矿山修复应用[J]. 环境工程, 2023, 41(2): 156−165.

    Google Scholar

    ZHANG D, LONG J, YANG W, et al. Subestrate amelioration of fluorite−type lead−zinc tailings and its application in mine restoration[J]. Environmental engineering, 2023, 41(2): 156−165.

    Google Scholar

    [14] 孙波. 聚丙烯酰胺对铁尾矿砂水分运移及物理性质的影响[D]. 太原: 山西农业大学, 2023.

    Google Scholar

    SUN B. Effects of polyacrylamide on water transport and physical property of iron tailings[D]. Taiyuan: Shanxi Agricultural University, 2023.

    Google Scholar

    [15] 刘目兴, 聂艳, 于婧. 不同初始含水率下粘质土壤的入渗过程[J]. 生态学报, 2012, 32(3): 871−878. doi: 10.5846/stxb201103300412

    CrossRef Google Scholar

    LIU M X, NIE Y, YU J. The infiltration process of clay soil under different initial soil water contents[J]. Acta Ecologica Sinica, 2012, 32(3): 871−878. doi: 10.5846/stxb201103300412

    CrossRef Google Scholar

    [16] 周涛, 谌芸, 王润泽, 等. 种草和施用聚丙烯酰胺对荒坡紫色土抗剪和抗蚀性能的影响研究[J]. 草业学报, 2019, 28(3): 62−73. doi: 10.11686/cyxb2018196

    CrossRef Google Scholar

    ZHOU T, CHEN Y, WANG R Z, et al. Effect of planting grasses and adding polyacrylamide on the shear performance and erodibility−resistance of purple soil in barren hill sides[J]. Acta Prataculturae Sinica, 2019, 28(3): 62−73. doi: 10.11686/cyxb2018196

    CrossRef Google Scholar

    [17] HU X, LIU L Y, LI S J, et al. Development of soil crusts under simulated rainfall and crust formation on a loess soil as influenced by polyacrylamide[J]. Pedosphere, 2012, 22(3): 415−424. doi: 10.1016/S1002-0160(12)60027-7

    CrossRef Google Scholar

    [18] YANG K, TANG Z J, FEH J Z. Effect of Co−use of fly ash and granular polyacrylamide on infiltration, runoff, and sediment yield from sandy soil under simulated rainfall[J]. Agronomy, 2020, 10(3): 344−344. doi: 10.3390/agronomy10030344

    CrossRef Google Scholar

    [19] 张根柱. 外源柠檬酸对塿土养分、酶活性及微生物活性的影响[D]. 西安: 西北农林科技大学, 2011.

    Google Scholar

    ZHANG G Z. Effects of exogenous citric on soil nutrients and enzyme activities and microbial activity of old manured loessal soil[D]. Xi’an: Northwest A & F university, 2011.

    Google Scholar

    [20] LI M, SHI L. Construction of a bridging network structure by citric acid for environmental heavy metal extraction[J]. ACS Earth and Space Chemistry, 2023, 7(4): 676−684. doi: 10.1021/acsearthspacechem.2c00389

    CrossRef Google Scholar

    [21] 邱德勋, 尹殿胜, 穆兴民, 等. 聚丙烯酰胺施用量、初始含水率和容重对土壤水分入渗特性的影响[J]. 土壤通报, 2022, 53(2): 333−340.

    Google Scholar

    QIU D X, YIN D S, MU X M, et al. Effects of polyacrylamide application amounts, initial water contents and bulk densities on soil infiltration characteristics[J]. Chinese Journal of Soil Science, 2022, 53(2): 333−340.

    Google Scholar

    [22] 朱本国, 王丽娟, 胡艳燕, 等. 不同土壤改良材料对碱性土壤pH值的影响试验[J]. 南方农业, 2021, 15(25): 68−71.

    Google Scholar

    ZHU B G, WANG L J, HU Y Y, et al. Effect tests of different soil improvement materials on pH value of alkaline soil[J]. Southern Agriculture, 2021, 15(25): 68−71.

    Google Scholar

    [23] 于耀泓, 刘悦, 顾晓娟, 等. 2种人工林对土壤碳氮磷化学计量特征及阳离子交换量的影响[J]. 中南林业科技大学学报, 2023, 43(6): 168−177.

    Google Scholar

    YU Y H, LIU Y, GU X J, et al. Effects of two plantations on soil carbon, nitrogen, phosphorus stoichiometry and cation exchange capacity[J]. Journal of Central South University of Forestry & Technology, 2023, 43(6): 168−177.

    Google Scholar

    [24] 杨树俊, 韩张雄, 王思远, 等. 土壤阳离子交换量与有机质、机械组成的关系[J]. 科学技术与工程, 2023, 23(7): 2799−2805. doi: 10.12404/j.issn.1671-1815.2023.23.07.02799

    CrossRef Google Scholar

    YANG S J, HAN Z X, WANG S Y, et al. The relationship between cation exchange capacity and organic matter, mechanical composition in soil[J]. Science Technology and Engineering, 2023, 23(7): 2799−2805. doi: 10.12404/j.issn.1671-1815.2023.23.07.02799

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(6)

Article Metrics

Article views(163) PDF downloads(36) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint