Citation: | WAN He, ZHANG Qiankang, XUE Jiwei, SONG Xuewen, WANG Sen, ZHANG Chonghui, BU Xianzhong. Research on the Inhibition Mechanism of Different Calcium Ion Precipitation on Molybdenum Flotation[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2): 67-73. doi: 10.13779/j.cnki.issn1001-0076.2024.02.009 |
Molybdenum flotation pulps containing a large amount of Ca2+, which may precipitate on the surface of Molybdenum with such as
[1] | 付静波, 赵宝华. 国内外钼工业发展现状[J]. 稀有金属, 2007(1): 151−154. FU J B, ZHAO B H. Present states of development of molybdenum industry at home and abroad[J]. Chinese Journal of Rare Metals, 2007(1): 151−154. |
[2] | 彭涛, 彭如清. 中国钼工业现状及发展战略[J]. 有色金属工业, 1998(10): 14−17. PENG T, PENG R Q. The current situation and development strategy of China's molybdenum industry[J]. China Nonferrous Metals, 1998(10): 14−17. |
[3] | 朱欣然. 国内外钼资源供需形势分析[J]. 矿产保护与利用, 2020, 40(1): 172−178. ZHU X R. Analysis of the supply and demand dituation of molybdenum resources at home and abroad[J]. Conservation and Utilization of Resouces, 2020, 40(1): 172−178. |
[4] | 孙兴家. 辉钼矿的工艺矿物性质[J]. 有色金属(选矿部分), 1982(5): 54−58, 32 SUN X J Process mineral properties of molybdenite[J]. Nonferrous Metals(Mineral Processing Section), 1982(5): 54−58, 32. |
[5] | 魏桢伦, 李育彪. 辉钼矿晶面各向异性及其对浮选的影响机制[J]. 矿产保护与利用, 2018(3): 31−36. WEI Z L, LI Y B. Anisotropy of molybdenum crystal plane and its influence mechanism on flotation[J]. Conservation and Utilization of Mineral Resources, 2018(3): 31−36. |
[6] | 殷俊良. 国外利用海水选矿的经验[J]. 有色矿山, 1982(6): 28−32. YIN J L. Experience of using seawater for mineral processing abroad[J]. China Mine Engineering, 1982(6): 28−32. |
[7] | RICRADO I J, LIZA F, LUIS A C. Effect of seawater on sulfide ore flotation: A review[J]. Mineral Processing and Extractive Metallurgy Review, 2016, 37(6): 369−384. doi: 10.1080/08827508.2016.1218871 |
[8] | 胡静文, 王艳红, 顾帼华, 等. 选矿废水的净化处理技术及机理研究进展[J]. 矿产保护与利用, 2021, 41(4): 35−42. HU J W, WANG Y H, GU J H, et al. Research progress on purification treatment technology and mechanism of mineral processing wastewater[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 35−42. |
[9] | 李明明, 尹禹琦, 宛鹤. 选钼废水回用处理浅析[J]. 中国钼业, 2020,44(3):4-8. LI M M, YIN Y Q, WAN H. Resue and treatment of molybdenum benefication wastewater[J]. China Molybdenum Industry, 2020, 44(3): 4−8. |
[10] | 阎文庆, 朱日来. 苦咸水、海水在国内外矿业中的应用[J]. 中国矿业, 2016, 25(10): 81−87+113 YAN W Q, ZHU R L. Use of salt water in domes tic and foreign mining industries[J]. China Mining Magazine, 2016, 25(10): 81−87+113. |
[11] | 宛鹤, 何廷树. 选钼废水性质及回用现状[J]. 中国钼业, 2016, 40(5): 11−15. WAN H, HE T S. Properties of molybdenum benefication wastewater and its resure[J]. China Molybdenum Industry, 2016, 40(5): 11−15. |
[12] | HIRAJIMA T, SUYANTARA G P, ICHIKAWA O, et al. Effect of Mg2+ and Ca2+ as divalent seawater cations on the floatability of molybdenite and chalcopyrite[J]. Minerals Engineering, 2016(96): 83−93. |
[13] | QU J P, HE T S, BU X Z, et al. New concept on high−calcium flotation wastewater reuse[J]. Minerals, 2018(8): 496. |
[14] | 张作金, 陈海彬, 吴天来, 等. 我国选矿废水处理研究进展[J]. 矿产保护与利用, 2020, 40(1): 79−84. ZHANG Z J, CHEN H B, WU T L, et al. Research progress in the treatment of mineral processing wastewater in China[J]. Conservation and Utilization of Mineral Resources, 2020, 40(1): 79−84. |
[15] | WAN H, YI P, SONG X W, et al. Role of improving molybdenite flotation by using aromatic hydrocarbon collector in high−calcium water: A multiscale investigation[J]. Minerals Engineering, 2023, 191: 107984. |
[16] | WAN H, YANG W, HE T S, et al. The influence of Ca2+ and pH on the interaction between PAHs and molybdenite edges[J]. Minerals, 2017, 7(6): 104. doi: 10.3390/min7060104 |
[17] | QIU Z H, LIU G Y, LIU Q X, et al. Understanding the roles of high salinity in inhibiting the molybdenite flotation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 509: 123−129. |
[18] | LUCAY F, CISTERNAS L A, GALVEZ E D, et al. Study of the natural floatability of molybdenite fines in saline solutions and effect of gypsum precipitation[J]. Mining, Metallurgy & Exploration, 2015, 32(4): 203−208. |
[19] | WANG J Y, XIE L, LU Q Y, et al. Electrochemical investigation of the interactions of organic and inorganic depressants on basal and edge planes of molybdenite[J]. Journal of Colloid And Interface Science, 2020(570): 350−361. |
[20] | 靳强, 高鹏元, 陈宗元, 等. Visual MINTEQ软件在大学化学教学中的应用[J]. 大学化学, 2021, 36(12): 192−198. JING Q, GAO P Y, CHEN Z Y et al. Application of Visual MINTEQ software in college chemistry teaching[J]. University Chemistry, 2021, 36(12): 192−198. |
[21] | PENG Y, LI Y B, LI W Q, et al. Elimination of adverse effects of seawater on molybdenite flotation using[J]. Minerals Engineering, 2020(146): 106108. |
Edge face of Molybdenum(a: polished; b: unpolished)
X−ray diffraction (XRD) analysis of Molybdenum
Distribution of calcium ion component concentration with pH
Influence of different calcium ion precipitation on recovery rate
Effect of calcium ion precipitation on recovery rate at different pH
Zeta potential graphs of precipitated calcium ions in different starch powders.
Zeta potential diagram of MoS2 in different solution environments at different pH
Edge contact angle of molybdenum with different treatment methods (a: water + collector; b: CaMoO4 + collector; c: CaSO4 + collector; d: CaCO3 + collector; e: Ca(OH)2 + collector)
SEM EDS images of Molybdenum and Ca2+ components(a: SEM images of Molybdenum with CaCO3; b: SEM image of Molybdenum with CaSO4; c: SEM image of Molybdenum with CaMoO4; d: EDS analysis diagram of CaCO3; e: EDS analysis diagram of CaSO4; f: EDS analysis diagram of CaMoO4