Citation: | SHA Xianwu, CHEN Caixian, LI Jiajian. Numerical Simulation of the Impact of Geostress on the Stability and Rockburst Susceptibility of Large Cross−section Roadways at Julong Copper Mine[J]. Conservation and Utilization of Mineral Resources, 2024, 44(2): 52-57. doi: 10.13779/j.cnki.issn1001-0076.2024.02.007 |
Analysing the stability of deep mine passages and rockburst propensity is of great significance to the safe construction of mines. The stability of the circular drainage tunnel under the influence of geostress on the Tibetan Plateau was investigated by numerical simulation using a large cross-section deep buried long roadway in Julong Copper Mine as the research object. The propensity for rockbursts after roadway excavation was analysed. The results show that the internal stresses in the surrounding rock of the circular drainage tunnel are dominated by horizontal stresses, and the maximum principal stress is 32 MPa. In the 16 sections of the drainage roadway, the stresses are mainly concentrated in sections DE, EF and DG of the roadway. The horizontal displacement of the roadway enclosure is greater than the vertical displacement. The maximum displacement of the circular drainage roadway spreads in all directions with point M as the centre. GM section, HL section, KN section of the roadway perimeter rock have occurred a large deformation, for this area of the roadway should be strengthened support. The maximum elastic strain of the DE, EF and DG sections of the roadway reached 1.01×105 J/m3, showing a tendency of rock explosion. Weakening of local stress concentrations in the rock mass by reducing the excavation scales. On-site monitoring has shown the modelling results to be reliable. The results of this paper provide theoretical references for the construction of ring drainage tunnel and ground pressure disaster prevention and control in Julong copper mine.
[1] | 李强, 刘春, 李仕俊, 等. 浅谈有色金属矿产资源地质找矿勘查布局[J]. 世界有色金属, 2023(12): 69−71. LI Q, LIU C, LI S J, et al. Discussion on the geological prospecting and exploration layout of non−ferrous mineral resources[J]. World Non−ferrous Metals, 2023(12): 69−71. |
[2] | 刘金菊. 浅谈我国有色金属矿产资源综合利用的现状、问题及对策[J]. 世界有色金属, 2023(6): 94−96. LIU J J. Discussion on the status quo, problems and countermeasures of comprehensive utilization of non−ferrous mineral resources in China[J]. World Nonferrous Metals, 2023(6): 94−96. |
[3] | 彭齐鸣. 矿业与英国工业革命[J]. 中国矿业, 2023, 32(12): 1−7. PENG Q M. Mining industry and British industrial revolution[J]. China Mining Industry, 2023, 32(12): 1−7. |
[4] | 乔兰, 董金水, 刘建, 等. 我国地下金属矿山岩爆灾害发生机制及预测方法研究进展[J]. 金属矿山, 2023(3): 14−28. QIAO L, DONG J S, LIU J, et al. Research progress on occurrence mechanism and prediction method of rock burst disaster in underground metal mines in China[J]. Metal Mine, 2023(3): 14−28. |
[5] | 梁伟章, 赵国彦. 深部硬岩矿山岩爆风险防控技术研究进展[J]. 岩土力学, 2022, 43(S2): 454−468. LIANG W Z, ZHAO G Y. Research progress of rock burst risk prevention and control technology in deep hard rock mines[J]. Rock and Soil Mechanics, 2022, 43(S2): 454−468. |
[6] | 李夕兵, 宫凤强, 王少锋等. 深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J]. 岩石力学与工程学报, 2019, 38(4): 708−723. LI X B, GONG F Q, WANG S F, et al. Mechanical mechanism and dynamic criterion of rock burst under combined dynamic and static loading in deep hard rock mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 708−723. |
[7] | 江飞飞, 周辉, 刘畅, 等. 地下金属矿山岩爆研究进展及预测与防治[J]. 岩石力学与工程学报, 2019, 38(5): 956−972. JIANG F F, ZHOU H, LIU C, et al. Research progress, prediction and prevention of rock burst in underground metal mines[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(5): 956−972. |
[8] | 黄凤辉. 金属矿山岩爆调查及防治[J]. 新疆有色金属, 2018, 41(6): 11−14. HUANG F H. Rock burst investigation and prevention in metal mines[J]. Xinjiang Nonferrous Metals, 2018, 41(6): 11−14. |
[9] | 熊泽华, 林金山. 基于地应力测量的深部矿区岩爆预测研究[J]. 现代矿业, 2023, 39(9): 1−4+9. XIONG Z H, LIN J S. Research on rock burst prediction in deep mining area based on in−situ stress measurement[J]. Modern Mining, 2023, 39(9): 1−4+9. |
[10] | 杜久华, 刘海波, 高新雨, 等. 深部金矿岩爆倾向性分析与防控支护设计研究[J]. 中国矿业, 2023, 32(S1): 404−408. DU J H, LIU H B, GAO X Y, et al. Research on rock burst tendency analysis and control support design of deep gold mine[J]. China Mining Industry, 2023, 32(S1): 404−408. |
[11] | 吝曼卿, 孙郡阳, 张继豹, 等. 地下磷矿山岩爆研究进展及防控措施[J]. 化工矿物与加工, 2023, 52(4): 16−21+55. LIN M Q, SUN J Y, ZHANG J B, et al. Research progress and prevention measures of rock burst in underground phosphate mines[J]. Chemical Minerals and Processing, 2023, 52(4): 16−21+55. |
[12] | 刘加柱, 高永涛, 吴顺川, 等. 考虑岩体性质空间变异的岩爆倾向性概率评估[J]. 工程科学学报, 2024, 46(1): 1−10. LIU J Z, GAO Y T, WU S C, et al. Probabilistic evaluation of rockburst tendency considering spatial variation of rock mass properties[J]. Chinese Journal of Engineering Science, 2019, 46(1): 1−10. |
[13] | 赵磊. 深部巷道围岩钻孔卸压与控制技术研究[J]. 机械管理开发, 2023, 38(8): 268−270. ZHAO L. Research on pressure relief and control technology of deep roadway surrounding rock drilling[J]. Machinery Management Development, 2023, 38(8): 268−270. |
[14] | 陈浩, 李子彬. 深部巷道岩爆防控措施效果对比研究[J]. 有色金属(矿山部分), 2023, 75(4): 37−45. CHEN H, LI Z B. Comparative study on effect of rock burst prevention and control measures in deep roadway[J]. Nonferrous Metals (Mining Section), 2023, 75(4): 37−45. |
[15] | 刘建东, 于世波. 高海拔矿区地应力测量和岩爆倾向性评价[J]. 中国矿业, 2022, 31(1): 140−145. LIU J D, YU S B. In−situ stress measurement and rockburst tendency evaluation in high altitude mining area[J]. China Mining Industry, 2002, 31(1) : 140−145. |
[16] | 张书国, 戴岭, 贺永胜, 等. 深部隧道岩爆倾向性预测与开挖优化数值模拟[J]. 现代矿业, 2023, 39(9): 5−9. ZHANG S G, DAI L, HE Y S, et al. Numerical simulation for prediction of rockburst propensity and optimisation of excavation in deep tunnels[J]. Modern Mining Industry, 2023, 39(9): 5−9. |
[17] | 柳禄湧, 李凯舟, 王能伟, 等. 山东招远水旺庄金矿深部地应力特征及其岩爆倾向性分析[J]. 地质力学学报, 2023, 29(3): 417−429. LIU L Y, LI K Z, WANG N W, et al. Characteristics of the deep geological stresses in the Zhaoyuan Shuiwangzhuang gold mine and analysis of its tendency to rockburst[J]. Journal of Geomechanics, 2023, 29(3): 417−429. |
Numerical simulation grid model of annular drainage lane
Section view of circular drainage lane
Stress balance results in XX direction
Stress balance results in ZZ direction
Cloud map of stress distribution in circular drainage roadway
Cloud map of displacement distribution in circular drainage roadway
Distribution of elastic energy of surrounding rock after excavation of circular drainage roadway
Monitoring point layout plan