Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 6
Article Contents

YAO Fuxing, MA Yiwen, ZHANG Lunxu, JIN Dan, SUN Xin. Development of Room-temperature and Low-temperature Collectors for Hematite Flotation: a Comprehensive Review[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 130-139. doi: 10.13779/j.cnki.issn1001-0076.2023.08.007
Citation: YAO Fuxing, MA Yiwen, ZHANG Lunxu, JIN Dan, SUN Xin. Development of Room-temperature and Low-temperature Collectors for Hematite Flotation: a Comprehensive Review[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 130-139. doi: 10.13779/j.cnki.issn1001-0076.2023.08.007

Development of Room-temperature and Low-temperature Collectors for Hematite Flotation: a Comprehensive Review

More Information
  • The majority of hematite flotation collectors currently utilized in China exhibit poor water solubility due to their long hydrocarbon chains. Consequently, the slurry frequently necessitates heating during flotation operations, which increases energy consumption and costs in processing plants. Developing hematite collectors that are effective at normal and low temperatures is one of the pivotal approaches to optimizing the hematite flotation reagent system enhancing efficiency, and reducing consumption, especially within the framework of the "dual carbon" goals. By meticulously analyzing the recent research findings on new normal and low-temperature collectors and compound collectors in the hematite flotation system, the characteristics of reagents conducive to normal and low-temperature flotation processes were elucidated, focusing on the active organic groups and their impact on production indicators. The objective is to summarize and expand upon the design ideas for new types of normal and low-temperature hematite flotation collectors, promoting the research, development, and application of these reagents in hematite flotation processes and gradually achieving enhanced efficiency and reduced consumption.

  • 加载中
  • [1] 宋仁峰, 李维兵, 刘华艳, 等. 我国铁矿石反浮选技术发展综合评述[J]. 金属矿山, 2009(9): 13−18.

    Google Scholar

    SONG R F, LI W B, LIU H Y, et al. Comprehensive review on the development of reverse flotation technology of iron ore in China[J]. Metal Mine, 2009(9): 13−18.

    Google Scholar

    [2] 刘军, 靳淑韵. 中国铁矿资源的现状与对策[J]. 中国矿业, 2009, 18(12): 1−2+19.

    Google Scholar

    LIU J, JIN S Y. Current situation and countermeasures of iron ore resources in China[J]. China Mining, 2009, 18(12): 1−2+19.

    Google Scholar

    [3] ALINE PEREIRA LEITE NUNES, CLÁUDIO LÚCIO LOPES PINTO, GEORGE EDUARDO SALES VALADO, et al. Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation[J]. Minerals Engineering, 2012(39): 206−212.

    Google Scholar

    [4] 余永富, 陈雯, 麦笑宇. 提高铁精矿质量实现高炉节能减排增效[J]. 矿产保护与利用, 2009(1): 13−16.

    Google Scholar

    YU Y F, CHEN W, MAI X Y. Improve the quality of iron concentrate to achieve blast furnace energy conservation and emission reduction efficiency[J]. Conservation and Utilization of Mineral Resources, 2009(1): 13−16.

    Google Scholar

    [5] 吴文红, 吴承优, 王秋林, 等. 高效低温捕收剂选别关宝山铁矿实验[J]. 现代矿业, 2018, 34(1): 136−138+144.

    Google Scholar

    WU W H, WU C Y, WANG Q L, et al. High−efficiency low−temperature collector selection test of Guanbaoshan Iron Mine[J]. Modern Mining, 2018, 34(1): 136−138+144.

    Google Scholar

    [6] 孟晓光. 捕收剂和起泡剂作用机理分析[J]. 煤炭加工与综合利用, 2017(5): 44−46.

    Google Scholar

    MENG X G. Mechanism analysis of collector and foaming agent[J]. Coal Processing and Comprehensive Utilization, 2017(5): 44−46.

    Google Scholar

    [7] 贺寒冰, 何廷树, 王鑫, 等. 矿浆温度对方铅矿浮选效果的影响及机理研究[J]. 矿产保护与利用, 2020, 40(6): 88−94.

    Google Scholar

    HE H B, HE T S, WANG X, et al. Study on the effect and mechanism of pulp temperature on galena flotation[J]. Conservation and Utilization of Mineral Resources, 2020, 40(6): 88−94.

    Google Scholar

    [8] 杨茂麟, 邓朝勇, 徐本军. 铁矿石浮选药剂的研究现状[J]. 钢铁研究学报, 2011, 23(11): 1−3+46.

    Google Scholar

    YANG M L, DENG C Y, XU B J. Research status of iron ore flotation reagents[J]. Journal of Iron and Steel Research, 2011, 23(11): 1−3+46.

    Google Scholar

    [9] 王涛. 安徽李楼铁矿常温浮选药剂应用之路[J]. 现代矿业, 2020, 36(7): 107−110.

    Google Scholar

    WANG T. Application of flotation reagent at normal temperature in Lilou Iron Mine, Anhui Province[J]. Modern Mining, 20, 36(7): 107−110.

    Google Scholar

    [10] 肖玮, 邵延海, 尉佳怡, 等. 钛铁矿浮选药剂研究现状及展望[J]. 矿产保护与利用, 2021, 41(5): 160−167.

    Google Scholar

    XIAO W, SHAO Y H, WEI J Y, et al. Research status and prospect of flotation reagents for ilmenite[J]. Conservation and Utilization of Mineral Resources, 2021, 41(5): 160−167.

    Google Scholar

    [11] 余攀, 丁湛, 李春龙, 柏少军, 等. 我国钛铁矿矿石浮选药剂研究进展[J]. 矿产保护与利用, 2020, 40(2): 82−87.

    Google Scholar

    YU P, DING Z, LI C L, BAI S J, et al. Research progress on flotation reagents for ilmenite ore in China[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 82−87.

    Google Scholar

    [12] 张朝宏, 戴惠新. 铁矿石反浮选捕收剂现状及未来发展趋势[J]. 矿产综合利用, 2012(2): 3−6.

    Google Scholar

    ZHANG C H, DAI H X. Present situation and future development trend of iron ore reverse flotation collector[J]. Multipurpose Utilization of Mineral Resources, 2012(2): 3−6.

    Google Scholar

    [13] 任爱军, 孙传尧. 油酸钠作捕收剂时变性淀粉对赤铁矿及石英可浮性的影响[J]. 矿冶, 2018, 27(3): 1−6+12.

    Google Scholar

    REN A J, SUN C Y. Effect of modified starch on floatability of hematite and quartz when sodium oleate is used as collector[J]. Mining and Metallurgy, 2018, 27(3): 1−6+12.

    Google Scholar

    [14] 李志彬, 马洪显. M203捕收剂浮选东鞍山高亚铁难选贫赤铁矿工业实验[J]. 金属矿山, 1994(1): 37−40.

    Google Scholar

    LI Z B, MA H X. Industrial test on flotation of high ferrous refractory lean hematite in Donganshan by M203 collector[J]. Metal Mine, 1994(1): 37−40.

    Google Scholar

    [15] 郑贵山, 刘炯天. 十二烷基磺酸钠浮选赤铁矿的研究[J]. 金属矿山, 2009(9): 70−73.

    Google Scholar

    ZHENG G S, LIU J T. Study on flotation of hematite with sodium dodecyl sulfonate[J]. Metal Mine, 2009(9): 70−73.

    Google Scholar

    [16] 许洪刚, 刘桂云. HD202捕收剂在鞍山式贫赤铁矿酸性正浮选工艺中的实验研究[J]. 金属矿山, 2009(1): 74−77.

    Google Scholar

    XU H G, LIU G Y. Experimental study on acidic positive flotation process of Anshan−type lean hematite with HD202 collector[J]. Metal Mine, 2009(1): 74−77.

    Google Scholar

    [17] 于慧梅, 王化军, 孙传尧. 餐饮废油制备JZQ−F捕收剂反浮选赤铁矿石实验研究[J]. 金属矿山, 2017(11): 64−69.

    Google Scholar

    YU H M, WANG H J, SUN C Y. Experimental study on reverse flotation of hematite ore by JZQ−F collector from waste cooking oil[J]. Metal Mine, 2017(11): 64−69.

    Google Scholar

    [18] 吴中贤, 杨晓, 于晓兵, 等. 响应曲面法优化赤铁矿纳米气泡反浮选实验研究[J]. 黄金, 2023, 44(2): 38−45.

    Google Scholar

    WU Z X, YANG X, YU X B, et al. Optimization of reverse flotation of hematite nanobubbles by response surface methodology[J]. Gold, 2023, 44(2): 38−45.

    Google Scholar

    [19] 任建伟, 王毓华. 铁矿反浮选脱硅的实验研究[J]. 矿产保护与利用, 2004(1): 31−34.

    Google Scholar

    REN J W, WANG Y H. Experimental study on reverse flotation desilication of iron ore[J]. Conservation and Utilization of Mineral Resources, 2004(1): 31−34.

    Google Scholar

    [20] 邹春林, 张范春, 朱一民, 等. 用新型捕收剂DA−1反浮选齐大山选厂混磁精[J]. 金属矿山, 2012(3): 63−65.

    Google Scholar

    ZOU C L, ZHANG F C, ZHU Y M, et al. Reverse flotation of mixed magnetic concentrate from Qidashan Concentrator with a new collector DA−1[J]. Metal Mine, 2012(3): 63−65.

    Google Scholar

    [21] 宋仁峰, 郭客, 张长奎, 等. 新型LKD阴离子反浮选捕收剂的研究[J]. 金属矿山, 2010(3): 57−61.

    Google Scholar

    SONG R F, GUO K, ZHANG C K, et al. Study on a new LKD anionic reverse flotation collector[J]. Metal Mines, 2010(3): 57−61.

    Google Scholar

    [22] 马艺闻, 徐冬林. 赤铁矿常温浮选的阴离子捕收剂研制与实验[J]. 矿冶工程, 2014, 34(6): 53−55.

    Google Scholar

    MA Y W, XU D L. Development and test of anionic collector for hematite flotation at room temperature[J]. Mining and Metallurgy Engineering, 2014, 34(6): 53−55.

    Google Scholar

    [23] 徐冬林, 王长艳, 张玲. 赤铁矿常温浮选的阴离子捕收剂研制与实验[C]//中国矿业科技文汇—2014, 2014: 670−672.

    Google Scholar

    XU D L, WANG C Y, ZHANG L. Development and test of anionic collector for hematite flotation at room temperature[C]//China Mining Science and Technology Wenhui−2014, 2014: 670−672.

    Google Scholar

    [24] 张月. 几种新型脂肪酸类捕收剂改性药剂介绍[J]. 盐湖研究, 2007(2): 34−37.

    Google Scholar

    ZHANG Y. Introduction of several new fatty acid collectors[J]. Journal of Salt Lake Research, 2007(2): 34−37.

    Google Scholar

    [25] 王福良.铜铅锌铁主要硫化氧化矿物浮选的基础理论研究[D].沈阳:东北大学,2011.

    Google Scholar

    WANG F L. Basic theoretical study on flotation of main sulfide oxide minerals of copper, lead, zinc and iron[D]. Shenyang: Northeast University, 2011.

    Google Scholar

    [26] 张行荣, 刘崇峻, 艾晶, 等. 新型耐低温捕收剂BK427在赤铁矿反浮选脱硅中的应用[J]. 中国矿业, 2014, 23(S2): 270−272.

    Google Scholar

    ZHANG X R, LIU C J, AI J, et al. Application of a novel low−temperature tolerant collector BK427 in reverse flotation desilication of hematite[J]. China Mining Magzine, 2014, 23(S2): 270−272.

    Google Scholar

    [27] 朱顺伟, 李孝龙, 李永利, 等. 新型捕收剂在尾矿中赤铁矿回收的应用实验[J]. 烧结球团, 2022, 47(4): 71−76+98.

    Google Scholar

    ZHU S W, LI X L, LI Y L, et al. Application test of new collector in hematite recovery from tailings[J]. Sintered Pellets, 2022, 47(4): 71−76+98.

    Google Scholar

    [28] 夏夕雯, 梁广泉, 朱一民. 新型常温捕收剂DX−1对赤铁矿的浮选性能研究[J]. 金属矿 山, 2018(6): 75−79.

    Google Scholar

    XIA X W, LIANG G Q, ZHU Y M. Study on the flotation performance of a new normal temperature collector DX−1 for hematite[J]. Metal Mines, 2018(6): 75−79.

    Google Scholar

    [29] 闵程, 胡向梅, 张汉泉. 复配阴离子捕收剂在高磷鲕状赤铁矿反浮选中的应用[J]. 矿冶工程, 2017, 37(2): 49−53.

    Google Scholar

    MIN C, HU X M, ZHANG H Q. Application of compound anionic collector in reverse flotation of high phosphorus oolitic hematite[J]. Mining and Metallurgical Engineering, 2017, 37(2): 49−53.

    Google Scholar

    [30] 董怡斌, 强敏, 段正义, 等. QD捕收剂对鄂西高磷鲕状赤铁矿的反浮选效果[J]. 金属矿 山, 2010(2): 62−65.

    Google Scholar

    DONG Y B, QIANG M, DUAN Z Y, et al. Reverse flotation effect of QD collector on high phosphorus oolitic hematite in western Hubei[J]. Metal Mine, 2010(2): 62−65.

    Google Scholar

    [31] 王涛, 龚豪, 武利朔, 等. 安徽李楼镜铁矿低温捕收剂反浮选实验研究[J]. 矿产保护与利用, 2015(3): 34−37.

    Google Scholar

    WANG T, GONG H, WU L S, et al. Experimental study on low temperature collector reverse flotation of Anhui Lilou specularite[J]. Conservation and Utilization of Mineral Resources, 2015(3): 34−37.

    Google Scholar

    [32] 罗光明. 耐低温捕收剂TA−19在李楼铁矿的研究及应用[J]. 矿业工程, 2020, 18(5): 41−44.

    Google Scholar

    LUO G M. Research and application of low temperature resistant collector TA−19 in Lilou Iron Mine[J]. Mining Engineering, 2020, 18(5): 41−44.

    Google Scholar

    [33] 李文风, 刘旭. 铁矿低温捕收剂CY−411的研制与应用实验研究[J]. 金属材料与冶金工程, 2014, 42(4): 42−44+54.

    Google Scholar

    LI W F, LIU X. Development and application of low temperature collector CY−411 for iron ore[J]. Metallic Materials and Metallurgical Engineering, 2014, 42(4): 42−44+54.

    Google Scholar

    [34] 高野, 张亚辉, 周南, 等. 新型捕收剂在宣龙鲕状赤铁矿反浮选中的实验研究[J]. 矿产保护与利 用, 2017(5): 34−37+43.

    Google Scholar

    GAO Y, ZHANG Y H, ZHOU N, et al. Experimental study of new collectors in reverse flotation of Xuanlong oolitic hematite[J]. Conservation and Utilization of Mineral Resources, 2017(5): 34−37+43.

    Google Scholar

    [35] 朱一民, 刘杰, 李艳军. 非硫化矿浮选药剂作用原理[M]. 北京: 冶金工业出版社, 2021

    Google Scholar

    ZHU Y M, LIU J, LI Y J. Action principle of non−sulfide ore flotation reagent[M]. Beijing: Metallurgical Industry Press, 2021.

    Google Scholar

    [36] 刘文宝. 赤铁矿反浮选高选择性阳离子捕收剂的合成及浮选性能研究[D]. 沈阳: 东北大学, 2020.

    Google Scholar

    LIU W B. Synthesis and flotation performance of highly selective cationic collector for reverse flotation of hematite[D]. Shenyang: Northeast University, 2020.

    Google Scholar

    [37] Weidi Z, Shuang L, Qilong R, et al. Proposing a novel factor influencing flotation collector abilities to collect minerals by comparing two cationic collectors N, N−bis(2−hydroxy−3−chloropropyl) dodecylamine and dodecylamine[J]. Applied Surface Science, 2023, 640.

    Google Scholar

    [38] Weichao L, Wenbao L, Kelin T, et al. Synthesis and flotation performance of a novel low−foam viscous cationic collector based on hematite reverse flotation desilication system[J]. Minerals Engineering, 2023, 201.

    Google Scholar

    [39] Zhongxian W, Dongping T, Youjun T, et al. A novel cationic collector for silicon removal from collophane using reverse flotation under acidic conditions[J]. International Journal of Minerals, Metallurgy and Materials, 2023, 30(6):1038-1047.

    Google Scholar

    [40] 刘文宝, 刘文刚, 段浩, 等. 阳离子捕收剂及其分子结构设计理论研究进展[J]. 金属矿山, 2019(9): 15−21.

    Google Scholar

    LIU W B, LIU W G, DUAN H, et al. Research progress of cationic collector and its molecular structure design theory[J]. Metal Mine, 2019(9): 15−21.

    Google Scholar

    [41] 余新阳, 钟宏, 刘广义. 阳离子反浮选脱硅捕收剂研究现状[J]. 轻金属, 2008(6): 6−10.

    Google Scholar

    YU X Y, ZHONG H, LIU G Y. Research status of cationic reverse flotation desilication collector[J]. Light Metals, 2008(6): 6−10.

    Google Scholar

    [42] 张永, 钟宏, 谭鑫, 等. 阳离子捕收剂研究进展[J]. 矿产保护与利用, 2011(3): 44−49.

    Google Scholar

    ZHANG Y, ZHONG H, TAN X, et al. Research progress of cationic collectors[J]. Conservation and Utilization of Mineral Resources, 2011(3): 44−49.

    Google Scholar

    [43] PANXING Z, WENGANG L, WENBAO L, et al. Novel low−foam viscous cationic collector 2−[2−(Tetradecylamino)ethoxy]ethanol: Design, synthesis, and flotation performance study to quartz[J]. Separation and Purification Technology, 2023, 307. DOI.org/10.1016/j.seppur.2022.122633

    Google Scholar

    [44] 王伟之, 刘泽伟, 王立宇, 等. 司家营铁矿阳离子反浮选降硅正交实验[J]. 矿产综合利用, 2016(6): 35−38.

    Google Scholar

    WANG W Z, LIU Z W, WANG L Y, et al. Sijiaying iron ore cationic reverse flotation orthogonal test[J]. Multipurpose Utilization of Mineral Resources, 2016(6): 35−38.

    Google Scholar

    [45] 杨雪. 新型捕收剂在尖山铁精矿反浮选中的实验探讨[J]. 华北国土资源, 2012(3): 127−129.

    Google Scholar

    YANG X. Experimental study of new collectors in reverse flotation of Jianshan iron concentrate[J]. North China Land Resources, 2012(3): 127−129.

    Google Scholar

    [46] 王春梅, 葛英勇, 王凯金, 等. GE−609捕收剂对齐大山赤铁矿反浮选的初探[J]. 有色金属(选矿部分), 2006(4): 41−43.

    Google Scholar

    WANG C M, GE Y Y, WANG K J, et al. Preliminary study on reverse flotation of Qidashan hematite with GE−609 collector[J]. Nonferrous Metals(Mineral Processing Section), 2006(4): 41−43.

    Google Scholar

    [47] 葛英勇. 新型捕收剂烷基多胺醚(GE−609)的合成及浮选性能研究[D]. 武汉: 武汉理工大学, 2010.

    Google Scholar

    GE Y Y. Synthesis and flotation performance of a new collector alkyl polyamine ether ( GE−609 )[D]. Wuhan: Wuhan University of Technology, 2010.

    Google Scholar

    [48] 朱一民, 乘舟越洋, 骆斌斌. 一种新型阳离子捕收剂DCZ浮选性能研究[J]. 矿产综合利用, 2017(1): 32−36.

    Google Scholar

    ZHU Y M, CHENG Z Y Y, LUO B B. Study on flotation performance of a new cationic collector DCZ[J]. Multipurpose Utilization of Mineral Resources, 2017(1): 32−36.

    Google Scholar

    [49] 佟柯霖, 刘文宝, 刘文刚, 等. 季铵化对阳离子捕收剂N, N−十二烷基二乙醇胺性能的影响研究[J]. 金属矿山, 2021(12): 28−33.

    Google Scholar

    TONG K L, LIU W B, LIU W G, et al. Effect of quaternization on the performance of cationic collector N, N−dodecyldiethanolamine[J]. Metal Mine, 2021(12): 28−33.

    Google Scholar

    [50] 周永锋, 罗溪梅, 宋水祥, 等. 四种阳离子捕收剂对赤铁矿和石英浮选行为的影响[J]. 矿产保护与利用, 2020, 40(2): 56−61.

    Google Scholar

    ZHOU Y F, LUO X M, SONG S X, et al. Effects of four cationic collectors on flotation behavior of hematite and quartz[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 56−61.

    Google Scholar

    [51] 刘文刚, 魏德洲, 崔宝玉, 等. 新型捕收剂在赤铁矿反浮选中的应用[J]. 东北大学学报(自然科学版), 2011, 32(4): 575−578.

    Google Scholar

    LIU W G, WEI D Z, CUI B Y, et al. Application of new collectors in reverse flotation of hematite[J]. Journal of Northeastern University (Natural Science Edition), 2011, 32(4): 575−578.

    Google Scholar

    [52] 王本英, 徐新阳, 陈熙, 等. 十二烷基胺类捕收剂的取代基基因特性对其浮选性能的影响研究[J]. 金属矿山, 2020(6): 31−35.

    Google Scholar

    WANG B Y, XU X Y, CHEN X, et al. Study on the effect of substituent gene characteristics of dodecylamine collectors on their flotation performance[J]. Metal Mines, 2020(6): 31−35.

    Google Scholar

    [53] 王纪镇, 印万忠, 刘明宝, 等. 浮选组合药剂协同效应定量研究[J]. 金属矿山, 2013(5): 62−66.

    Google Scholar

    WANG J Z, YIN W Z, LIU M B, et al. Quantitative study on synergistic effect of flotation combined reagents[J]. Metal Mines, 2013(5): 62−66.

    Google Scholar

    [54] 刘文宝, 甘琦强, 刘文刚, 等. 新型组合捕收剂对锂云母、钠长石和石英的浮选性能研究[J]. 矿产保护与利用, 2023, 43(3): 34−42.

    Google Scholar

    LIU W B, GAN Q Q, LIU W G, et al. Study on the flotation performance of new combined collectors for lepidolite, albite and quartz[J]. Conservation and Utilization of Mineral Resources, 2023, 43(3): 34−42.

    Google Scholar

    [55] 卢颖. 关于组合药剂在浮选工艺应用的探讨[J]. 中国矿业, 2000(S1): 269−271.

    Google Scholar

    LU Y. Discussion on the application of combined reagents in flotation process[J]. China Mining Magazine, 2000(S1): 269−271.

    Google Scholar

    [56] 卢颖, 孙胜义. 组合药剂的发展及规律[J]. 矿业工程, 2007(6): 42−44. doi: 10.3969/j.issn.1671-8550.2007.06.017

    CrossRef Google Scholar

    LU Y, SUN S Y. The Development and Law of Combined Reagents[J]. Mining Engineering, 2007(6): 42−44. doi: 10.3969/j.issn.1671-8550.2007.06.017

    CrossRef Google Scholar

    [57] Qiang L, Yating L, Jiyan S, et al. Synergistic detoxification by combined reagents and safe filling utilization of cyanide tailings[J]. Chemosphere, 2022, 312(P1).

    Google Scholar

    [58] 刘述忠, 李晓阳, 徐晓军, 等. 捕收剂组合使用的研究概况[J]. 云南冶金, 2002(4): 17−20.

    Google Scholar

    LIU S Z, LI X Y, XU X J, et al. Research on the combination of collectors[J]. Yunnan Metallurgy, 2002(4): 17−20.

    Google Scholar

    [59] MAITI, K, BHATTACHARYA, SC, MOULIK, SP, et al. Physicochemistry of the binary interacting mixtures of cetylpyridinium chloride (CPC) and sodium dodecylsulfate (SDS) with special reference to the catanionic ion−pair (coacervate) behavior[J]. Colloids and Surfaces, A. Physicochemical and Engineering Aspects, 2010, 355(1/3): 88−98.

    Google Scholar

    [60] Qian Y, Ding W, Wang Z, et al. New combined depressant/collectors system for the separation of powellite from dolomite and the interaction mechanism[J]. Minerals, 2020, 10(3): 291.

    Google Scholar

    [61] QIONGYIN M, HANYU Z, LEMING O. Flotation separation of chalcopyrite and talc using calcium ions and calcium lignosulfonate as a combined depressant[J]. Metals, 2021, 11(4): 651.

    Google Scholar

    [62] 姜永良, 付泳贺, 姜效军, 等. 组合阴离子捕收剂对石英的吸附机理研究[J]. 金属矿山, 2020(11): 118−123.

    Google Scholar

    JIANG Y L, FU Y H, JIANG X J, et al. Adsorption mechanism of quartz by combined anionic collectors[J]. Metal Mines, 2020(11): 118−123.

    Google Scholar

    [63] 仝丽娟, 朱一民, 李艳军, 等. 组合药剂TL−5对东鞍山赤铁矿的捕收性能研究[J]. 现代矿业, 2010, 26(8): 34−37.

    Google Scholar

    TONG L J, ZHU Y M, LI Y J, et al. Study on the collecting performance of combined reagent TL−5 for Donganshan hematite[J]. Modern Mining, 2010, 26(8): 34−37.

    Google Scholar

    [64] 曹少航, 印万忠, 姚金, 等. 组合捕收剂在赤铁矿常温反浮选中的应用[J]. 金属矿山, 2016(12): 77−81. doi: 10.3969/j.issn.1001-1250.2016.12.017

    CrossRef Google Scholar

    CAO S H, YIN W Z, YAO J, et al. Application of combined collectors in reverse flotation of hematite at room temperature[J]. Metal Mine, 2016(12): 77−81. doi: 10.3969/j.issn.1001-1250.2016.12.017

    CrossRef Google Scholar

    [65] 徐小革, 乘舟越洋, 朱一民, 等. 复合捕收剂在铁矿石反浮选中的协同作用[J]. 金属矿山, 2019(2): 92−96.

    Google Scholar

    XU X G, CHENG Z Y Y, ZHU Y M, et al. Synergistic effect of composite collectors in reverse flotation of iron ore[J]. Metal Mine, 2019(2): 92−96.

    Google Scholar

    [66] 王小飞, 米金月, 陈先龙, 等. 组合捕收剂WM−1对东鞍山赤铁矿的捕收性能[J]. 金属矿山, 2010(8): 51−54.

    Google Scholar

    WANG X F, MI J Y, CHEN X L, et al. Collection performance of combined collector WM−1 for Donganshan hematite[J]. Metal Mine, 2010(8): 51−54.

    Google Scholar

    [67] 祁忠旭, 韩远燕, 孙大勇, 等. 提高云南某超贫微细赤铁矿选矿回收率的研究[J]. 烧结球团, 2020, 45(5): 59−62.

    Google Scholar

    QI Z X, HAN Y Y, SUN D Y, et al. Study on improving the recovery rate of an ultra−low fine hematite in Yunnan[J]. Sintered pellets, 2020, 45(5): 59−62.

    Google Scholar

    [68] 纪振明. 云南某难选赤铁矿选矿实验[J]. 现代矿业, 2018, 34(11): 103−105+123. doi: 10.3969/j.issn.1674-6082.2018.11.024

    CrossRef Google Scholar

    JI Z M. Mineral processing test of a refractory hematite in Yunnan[J]. Modern Mining, 2018, 34(11): 103−105+123. doi: 10.3969/j.issn.1674-6082.2018.11.024

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(5)

Tables(4)

Article Metrics

Article views(325) PDF downloads(0) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint