Citation: | JING Maochen, AN Dengji, WANG Jizhen. Research Progress on Flotation Solution Chemistry and Mechanism of Reagents of Hematite and Quartz[J]. Conservation and Utilization of Mineral Resources, 2023, 43(6): 120-129. doi: 10.13779/j.cnki.issn1001-0076.2023.06.015 |
Quartz is commonly encountered as a gangue mineral in the separation process of hematite. Currently, effective separation of hematite from quartz is primarily achieved using high−efficiency flotation reagents and reverse flotation processes. The current research status of the flotation chemical mechanism of hematite and quartz is introduced in this article from the perspectives of mineral crystal anisotropy, structure−activity relationship of flotation agents, and adsorption mechanism of agents. The mechanism and adsorption mechanism of starch and its derivatives with iron ore, as well as the activation mechanism of calcium ions on quartz, are expounded in this paper. The types, properties, and structure−activity relationships of commonly used high−efficiency collectors are also listed. Finally, the development trend of theoretical research on high−efficiency flotation agents is anticipated in this paper, in order to provide a reference for the study of efficient separation theory and technology of hematite and quartz.
[1] | 杨诚, 张晨, 李明阳, 等. 有机抑制剂在铁矿石反浮选中的应用研究进展[J]. 矿产保护与利用, 2021, 41(4): 141−149. YANG C, ZHANG C, LI M Y, et al. Research development of application of organic depressant in Iron ore reverse flotation[J]. Conservation and Utilization of Mineral Resources, 2021, 41(4): 141−149. |
[2] | 刘若华, 孙伟, 金娇. 改性淀粉抑制赤铁矿反浮选石英的作用机理研究[J]. 矿冶工程, 2018, 38(1): 50−53+59. doi: 10.3969/j.issn.0253-6099.2018.01.011. LIU R H, SUN W, JIN J. Action mechanism of modified starch in reverse flotation of quartz from hematite[J]. Mining and Metallurgical Engineering, 2018, 38(1): 50−53+59. doi: 10.3969/j.issn.0253-6099.2018.01.011. |
[3] | SUN C Z, CHEN W, JIA X X, et al. Comprehensive understanding of the superior performance of Sm‐modified Fe2O3 catalysts with regard to NO conversion and H2O/SO2 resistance in the NH3‐SCR reaction[J]. Chinese Journal of Catalysis, 2021, 42(3): 417−430. doi: 10.1016/S1872-2067(20)63666-X |
[4] | 王锐, 牛鹏举, 许海娟, 等. 锰掺杂对针铁矿的结构、表面性质及吸附硒的影响[J]. 土壤学报, 2020, 57(1): 108−118. WANG R, NIU P J, XU H J, et al. Effects of Mn−Doping on structure, surface properties and selenium adsorption of goethite[J]. Acta Pedologica Sinica, 2020, 57(1): 108−118. |
[5] | 何宏平, 朱建喜, 陈锰, 等. 矿物结构与矿物物理研究进展综述(2011~2020年)[J]. 矿物岩石地球化学通报, 2020, 39(4): 697−713+682. HE H P, ZHU J X, CHEN M, et al. Progresses in researches on mineral structure and mineral physics (2011−2020)[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2020, 39(4): 697−713+682. |
[6] | 何宏平, 鲜海洋, 朱建喜, 等. 从矿物粉晶表面反应性到矿物晶面反应性−以黄铁矿氧化行为的晶面差异性为例[J]. 岩石学报, 2019, 35(1): 129−136. doi: 10.18654/1000-0569/2019.01.09 HE H P, XIAN H Y, ZHU J X, et al. Perspective of mineral reactivity from surfaces to crystal faces: A case study on the oxidation behavior differences among various crystal faces of pyrite[J]. Acta Petrologica Sinica, 2019, 35(1): 129−136. doi: 10.18654/1000-0569/2019.01.09 |
[7] | ZHANG H L, XU Z J, CHEN D X, et al. Adsorption mechanism of water molecules on hematite (104) surface and the hydration microstructure[J]. Applied Surface Science, 2021, 550.(7): 149328. |
[8] | SHRIMALI K, JIN J Q, HASSAS B V, et al. The surface state of hematite and its wetting characteristics[J]. Journal of Colloid and Interface Science, 2016, 477: 16−24. doi: 10.1016/j.jcis.2016.05.030 |
[9] | LI L X, HAO H Q , YUAN Z T, et al. Molecular dynamics simulation of siderite−hematite−quartz flotation with sodium oleate[J]. Applied Surface Science, 2017, 419: 557−563. |
[10] | WU H Q, TIAN J, XU L H, et al. Anisotropic surface chemistry properties of salt−type and oxide mineral crystals[J]. Minerals Engineering, 2020, 154: 106411. |
[11] | GAO Z Y, SUN W, HU Y H. Mineral cleavage nature and surface energy: Anisotropic surface broken bonds consideration[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(9):2930−2937. |
[12] | FERRER M M, GOUVEIA A F, GRACIA L, et al. A 3D platform for the morphology modulation of materials: first principles calculations on the thermodynamic stability and surface structure of metal oxides: Co3O4, α −Fe2O3, and In2O3[J]. Modelling and Simulation in Materials Science and Engineering, 2016, 24(2): 025007. |
[13] | WANG X Y, LIU W G, DUAN H, et al. The adsorption mechanism of calcium ion on quartz (101) surface: A DFT study[J]. Powder Technology, 2018, 329: 158−166. doi: 10.1016/j.powtec.2018.01.086 |
[14] | WANG Y F, SULTAN A K, LUO X M, et al. Understanding the depression mechanism of citric acid in sodium oleate flotation of Ca2+−activated quartz: Experimental and DFT study[J]. Minerals Engineering, 2019, 140: 105878. doi: 10.1016/j.mineng.2019.105878 |
[15] | 王丽. 云母类矿物和石英的浮选分离及吸附机理研究[D]. 长沙: 中南大学, 2012. WANG L. Study on the mechanism and flotation separation of mica and quartz[D]. Changsha: Central South University, 2012. |
[16] | 孙伟, 王丽, 曹学锋, 等. 石煤提钒的浮选工艺及吸附机理[J]. 中国有色金属学报, 2012, 22(7): 2069−2074. SUN W, WANG L, CAO X F, et al. Flotation technology and adsorption mechanism of vanadium extraction from stone coal[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(7): 2069−2074. |
[17] | 刘安, 樊民强. 水相环境中十二胺在石英及磁铁矿表面吸附的分子动力学模拟[J]. 中国有色金属学报, 2015, 25(8): 2226−2235. LIU A, FAN M Q. Molecular dynamics simulations of dodecylamine adsorption on quartz and magnetite surfaces in aqueous solution[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(8): 2226−2235. |
[18] | GUO W D, ZHU Y M, HAN Y X, LI Y J, et al. Flotation performance and adsorption mechanism of a new collector 2−(carbamoylamino) lauric acid on quartz surface[J]. Minerals Engineering, 2020, 153: 106398. doi: 10.1016/j.mineng.2020.106398 |
[19] | ZHANG C Y, XU Z J, HU Y H, et al. Novel insights into the hydroxylation behaviors of α−Quartz (101) surface and its effects on the adsorption of sodium oleate[J]. Minerals, 2019, 9(7): 450. doi: 10.3390/min9070450 |
[20] | 陈建华, 朱阳戈. 硫化矿物表面水化层结构及其对药剂作用的影响[J]. 矿产保护与利用, 2018(3): 1−8. CHEN J H, ZHU Y G. Research on the solid−liquid interfacial structure and properties of sulfide minerals and its effect on the flotation reagent adsorption[J]. Conservation and Utilization of Mineral Resources, 2018(3): 1−8. |
[21] | SANTOS I D, OLIVEIRA J F. Utilization of humic acid as a depressant for hematite in the reverse flflotation of iron ore[J]. Minerals Engineering, 2007, 20(10): 1003−1007. doi: 10.1016/j.mineng.2007.03.007 |
[22] | ZHANG X R, ZHU Y G, YU X, et al. A novel macromolecular depressant for reverse flotation: Synthesis and depressing mechanism in the separation of hematite and quartz[J]. Separation and Purification Technology, 2017, 186: 175−181. doi: 10.1016/j.seppur.2017.05.051 |
[23] | TOHRY A, DEHGHAN R, LAURINDO S L F, et al. Tannin: An eco−friendly depressant for the green flotation separation of hematite from quartz[J]. Minerals Engineering, 2021, 168: 106917. doi: 10.1016/j.mineng.2021.106917 |
[24] | PAVLOVIC S, BRANDAO P R G. Adsorption of starch, amylose, amylopectin and glucose monomer and their effect on the flotation of hematite and quartz[J]. Minerals Engineering, 2003, 16(11): 1 117−1122. |
[25] | YANG S Y, WANG L G. Structural and functional insights into starches as depressant for hematite flotation[J]. Minerals Engineering, 2018, 124: 149−157. doi: 10.1016/j.mineng.2018.05.022 |
[26] | YANG S Y, LI C, WANG L G. Dissolution of starch and its role in the flotation separation of quartz from hematite[J]. Powder Technology, 2017, 320: 346−357. doi: 10.1016/j.powtec.2017.07.061 |
[27] | 任爱军, 孙传尧, 朱阳戈. 变性淀粉在赤铁矿阳离子反浮选脱硅中的抑制性能[J]. 工程科学学报, 2017, 39(12): 1815−1821. REN A J, SUN C Y, ZHU Y G. Depressing capability of modified starches in the reverse flotation of quartz from hematite with cationic collectors[J]. Chinese Journal of Engineering, 2017, 39(12): 1815−1821. |
[28] | 任爱军, 孙传尧. 油酸钠作捕收剂时变性淀粉对赤铁矿及石英可浮性的影响[J]. 矿冶, 2018, 27(3): 1−6,12. REN A J, SUN C Y. Effect of modified starches on flotability of hematite and quartz using sodium oleat as collector[J]. Mining and Metallurgy, 2018, 27(3): 1−6,12. |
[29] | 伍喜庆, 王志熙, 岳涛. 铁离子淀粉配合物在某铁矿石反浮选中的抑制行为及机理[J]. 金属矿山, 2017(11): 70−74. WU X Q, WANG Z X, YUE T. Study on depressing effect and mechanism of ferric−starch complex in reverse flotation of an iron mine[J]. Metal Mine, 2017(11): 70−74. |
[30] | YUE T, WU X Q. Depressing iron mineral by metallic−starch complex (MSC) in reverse flotation and its mechanism[J]. Minerals, 2018, 8(3): 85−85. doi: 10.3390/min8030085 |
[31] | 朱玉霜, 朱建光. 浮选药剂的化学原理[M]. 长沙: 中南工业大学出版社, 1996 ZHU Y S, ZHU J G. The chemical principles of flotation reagents[M]. Changsha: Central South University of Technology Press, 1996. |
[32] | LIU Q, ZHANG Y H, LASKOWSKI J. S. The adsorption of polysaccharides onto mineral surfaces: an acid/base interaction[J]. International Journal of Mineral Processing, 2000, 60(3/4): 229−245. doi: 10.1016/S0301-7516(00)00018-1 |
[33] | LASKOWSKI J S, LIU Q, O'CONNOR C T. Current understanding of the mechanism of polysaccharide adsorption at the mineral/aqueous solution interface[J]. International Journal of Mineral Processing, 2007, 84(1/2/3/4): 59−69. doi: 10.1016/j.minpro.2007.03.006 |
[34] | 李晔, 刘奇, 许时. 糊精在氧化矿表面的吸附特性及作用机理[J]. 中国有色金属学报, 1996, 6(3): 33−37. LI Y, LIU Q, XU S. Adsorption behaviour and interaction mechanisms of dextrin on oxidative mineral surface[J]. The Chinese Journal of Nonferrous Metals, 1996, 6(3): 33−37. |
[35] | MOREIRAA G F, PEÇANHAB E R, MONTEAB M B M, et al. XPS study on the mechanism of starch−hematite surface chemical complexation[J]. Minerals Engineering, 2017, 110: 96−103. doi: 10.1016/j.mineng.2017.04.014 |
[36] | PEçANHAA E R, MARTA D F, SIMãOB R A, et al. Interaction forces between colloidal starch and quartz and hematite particles in mineral flotation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 562: 79−85. |
[37] | HAO H Q, LI X L, YUAN Z T, et al. Molecular arrangement of starch, Ca2+ and oleate ions in the siderite−hematite−quartz flotation system[J]. Journal of Molecular Liquids, 2018, 254: 349−356. doi: 10.1016/j.molliq.2018.01.117 |
[38] | LI X L, ZHANG C, YUAN Z T, et al. AFM and DFT study of depression of hematite in oleate−starch−hematite flotation system[J]. Applied Surface Science, 2019, 480: 749−758. doi: 10.1016/j.apsusc.2019.02.224 |
[39] | ZHANG H L, XU Z J, SUN W, et al. Selective adsorption mechanism of dodecylamine on the hydrated surface of hematite and quartz[J]. Separation and Purification Technology, 2021, 275: 119−137. |
[40] | 戴思行, 王欠欠, 刘诚, 等. 淀粉类调整剂在矿物浮选中的应用和作用机理研究进展[J]. 矿产综合利用, 2021(4): 73−79. doi: 10.3969/j.issn.1000-6532.2021.04.011 DAI S X, WANG Q Q, LIU C, et al. Research progress of application and interaction mechanism of starch−based regulators in mineral flotation[J]. Multipurpose Utilization of Mineral Resources, 2021(4): 73−79. doi: 10.3969/j.issn.1000-6532.2021.04.011 |
[41] | FUERSTENAU M C. The role of metal ion hydrolysis in sulfonate flotation of quartz[J]. Trans Aime, 1963, 226: 449. |
[42] | 王淀佐, 胡岳华. 氢氧化物表面沉淀在石英浮选中的作用[J]. 中南矿冶学院学报, 1990, 21(3): 248−253. WANG D Z, HU Y H. The investigation of role of surface precipitation of meta hydroxide in flotation of quartz[J]. Journal of Central South University, 1990, 21(3): 248−253. |
[43] | 罗溪梅. 含碳酸盐铁矿石浮选体系中矿物的交互影响研究[D]. 沈阳: 东北大学, 2014 LUO X M. Research on interaction effect among minerals in flotation system of carbonate−contatining iron ore[D]. Shenyang: Northeastern University, 2014. |
[44] | 郭文达, 朱一民, 韩跃新, 等. 钙离子对脂肪酸类捕收剂浮选石英的影响机理[J]. 东北大学学报(自然科学版), 2018, 39(3): 409−415. doi: 10.12068/j.issn.1005-3026.2018.03.021 GUO W D, ZHU Y M, HAN YUEXIN, et al. Effects and activation mechanism of calcium ion on the flotation of quartz with Fatty acid collector[J]. Journal of Northeastern University (Natural Science), 2018, 39(3): 409−415. doi: 10.12068/j.issn.1005-3026.2018.03.021 |
[45] | Ximei Luo, Qiqiang Lin, Yunfan Wang, et al. New insights into the activation mechanism of calcium species to quartz: ToF−SIMS and AFM investigation[J]. Minerals Engineering, 2020, 153(C). |
[46] | LUO A, CHEN J. Effect of hydration and hydroxylation on the adsorption of metal ions on quartz surfaces: DFT study[J]. Applied Surface Science, 2022, 595: 153553. doi: 10.1016/j.apsusc.2022.153553 |
[47] | 伍喜庆, 刘长淼, 黄志华. 一种铁矿物与石英分离的有效浮选药剂[J]. 矿冶工程, 2005(3): 41−43. doi: 10.3969/j.issn.0253-6099.2005.03.012 WU X Q, LIU C M, HUANG Z H. An efficient collector for separation of quartz from iron minerals[J]. Mining and Metallurgical engineering, 2005(3): 41−43. doi: 10.3969/j.issn.0253-6099.2005.03.012 |
[48] | 葛英勇. 新型捕收剂烷基多胺醚(GE−609)的合成及浮选性能研究[D]. 武汉: 武汉理工大学, 2010 GE Y Y. Synthesis of a new collector alkyl polyamin ether (Ge−609) and researcher of its flotation bhavior[D]. Wuhan: Wuhan University of Technology, 2010. |
[49] | 葛英勇, 朱鹏程, 陈毅琳, 等. 中和度和Ca2+、Mg2+对GE−609浮选酒钢焙烧矿的影响[J]. 矿冶工程, 2009, 29(6): 39−42. GE Y Y, ZHU P C, CHEN Y L, et al. Effects of neutralization and Ca2+, Mg2+ on flotation of Jiusteel’s roasting−magnetic iron concentrates with GE−609[J]. Mining and Metallurgical Engineering, 2009, 29(6): 39−42. |
[50] | 刘文刚. 新型赤铁矿反浮选脱硅捕收剂的合成及浮选性能研究[D]. 沈阳: 东北大学, 2010 LIU W G. Synthesis and flotation performance of new collectors collectors in reverse flotation of hematite[D]. Shenyang: Northeastern University, 2010. |
[51] | 刘文宝, 刘文刚, 段浩, 等. 阳离子捕收剂及其分子结构设计理论研究进展[J]. 金属矿山, 2019(9): 15−21. LIU W B, LIU W G, DUAN H, et al. Research progress on cationic collector and their theoretical of molecular structure design[J]. Metal Mine, 2019(9): 15−21. |
[52] | 周永锋, 罗溪梅, 宋水祥, 等. 四种阳离子捕收剂对赤铁矿和石英浮选行为的影响[J]. 矿产保护与利用, 2020, 40(2): 56−61. ZHOU Y F, LUO X M, SONG S X, et al. Effect of four kinds of cationic collectors on flotation of hematite and quartz[J]. Conservation and Utilization of Mineral Resources, 2020, 40(2): 56−61. |
[53] | 邹文博. 几种阳离子捕收剂对氧化铁矿的反浮选性能研究[D]. 长沙: 中南大学, 2011 ZOU W B. Study on the anti−flotation performance of several cationic collectors on iron oxide ore[D]. Changsha: Centarl South University, 2011. |
[54] | 王本英, 徐新阳, 陈熙, 等. 十二烷基胺类捕收剂的取代基基因特性对其浮选性能的影响研究[J]. 金属矿山, 2020(6): 31−35. WANG B Y, XU X Y, CHEN X, et al. Influence of substituents genetic characteristics on flotation performance of dodecyl amine cationic collectors[J]. Metal Mine, 2020(6): 31−35. |
[55] | 陈雯, 许海峰, 周瑜林. 新型醚酸捕收剂CY−1对绿泥石的浮选作用机理及在铁矿反浮选中的应用[J]. 中国有色金属学报, 2020, 30(11): 2714−2725. CHEN W, XU H F, ZHOU Y L. Flotation mechanism of novel ether acid collector CY−1 to chlorite and its application in reverse floatation of iron ores[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(11): 2714−2725. |
[56] | QUAST K. Flotation of hematite using C6–C18 saturated fatty acids[J]. Mineral Engineering, 2005, 19(6): 582−597. |
[57] | WOOD G B A, MENSAH J A, SKINNER W. A study of flotation characteristics of monazite, hematite, and quartz using anionic collectors[J]. International Journal of Mineral Processing Volume, 2017, 158: 55−62. |
[58] | LI H, LIU M X, LIU Q. The effffect of non−polar oil on fifine hematite flflocculation and flflotation using sodium oleate or hydroxamic acids as a collector[J]. Minerals Engineering Volume, 2018, 119: 105−115. doi: 10.1016/j.mineng.2018.01.004 |
[59] | 赵宁宁. 阴离子捕收剂DZN−1的合成及其捕收性能的研究[D]. 沈阳: 东北大学, 2011. ZHAO N N. Study on collection behavior of collector DZN−1 and collecting propertise[D]. Shenyang: Northeastern University, 2011. |
[60] | 骆斌斌. α−醚胺基脂肪酸分子结构设计及其捕收机理研究[D]. 沈阳: 东北大学, 2017. LUO B B. Molecular design and collecting mechanisms of α−ammonolyzed fatty acid collectors[D]. Shenyang: Northeastern University, 2017. |
[61] | QUAST K. Literature review on the use of natural products in the flotation of iron oxide ores[J]. Minerals Engineering Volume, 2017, 108: 12−24. doi: 10.1016/j.mineng.2017.01.008 |
[62] | 陈建华. 浮选捕收剂的结构及其作用机理研究[J]. 矿产保护与利用, 2017(4): 98−106. CHEN J H. Structure and mechanism of flotation collectors[J]. Conservation and Utilization of Mineral Resources, 2017(4): 98−106. |
Crystal structure(left) and X−ray diffraction (right) of hematite
Crystallographic structure and morphologies of α−Fe2O3 with crystal planes (001), (012), (100), (101) and (110)
Hydration interface model of hematite (104) surface[7]
Snapshot of a water drop at the hematite (001) surface (left), hydroxylated hematite (001) surface (right)[8]. (The simulation time is 0.5 ns. Green−Fe; red−O; white−H).
Sturcture model of quartz surface[18]
Molecular structure of amylose (left) and amylopectin (right)