Zhengzhou Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological SciencesHost
2023 Vol. 43, No. 4
Article Contents

XIAO Wei, YANG Juan, LIU Jianfei, SONG Qun, LI Hongjing, ZHANG He, YU Junfu. Research Progress in Desulphurization and Defluorination of Magnetite Concentrate[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 155-164. doi: 10.13779/j.cnki.issn1001-0076.2023.08.003
Citation: XIAO Wei, YANG Juan, LIU Jianfei, SONG Qun, LI Hongjing, ZHANG He, YU Junfu. Research Progress in Desulphurization and Defluorination of Magnetite Concentrate[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 155-164. doi: 10.13779/j.cnki.issn1001-0076.2023.08.003

Research Progress in Desulphurization and Defluorination of Magnetite Concentrate

More Information
  • Magnetite concentrate is one of the raw materials of iron and steel industry. The removal of harmful impurities sulfur and fluorine is a technical problem faced by mineral processing industry for a long time. This paper summarizes the desulphurization and defluorination technology of high sulfur fluorine magnetite concentrate, especially the application of flotation method in the desulphurization and defluorination process of magnetite concentrate. At the same time, a new method of synchronous reverse flotation desulphurization and defluorination is put forward, and suggestions for future research on desulphurization and defluorination technology of magnetite concentrate are put forward.

  • 加载中
  • [1] 饶峰, 童雄, 黄宇林, 等. 云南文山某铁精矿脱硫的试验研究[J]. 云南冶金, 2007(5): 13−16.

    Google Scholar

    RAO F, TONG X, HUANG Y L, et al. Experimental study on desulfurization of an iron concentrate from Wenshan, Yunnan Province[J]. Yunnan Metallurgy, 2007(5): 13−16.

    Google Scholar

    [2] 张鸣一. 铁精矿焙烧过程中氟化物生成的热力学与动力学[D]. 包头: 内蒙古科技大学, 2014.

    Google Scholar

    ZHANG M Y. Thermodynamics and kinetics of fluoride formation during roasting of iron concentrate[D]. Baotou: Inner Mongolia University of Science and Technology, 2014.

    Google Scholar

    [3] 蔡隆九, 宋玉萍, 王伟华. 包钢的氟污染及其治理[J]. 包钢科技, 2002(1): 78−80.

    Google Scholar

    CAI L J, SONG Y P, WANG W H. Fluorine pollution of Baotou Steel and its treatment[J]. Baotou Steel Technology, 2002(1): 78−80.

    Google Scholar

    [4] 杨振刚. 白云鄂博铁精矿焙烧过程氟、钾、钠逸出研究[D]. 包头: 内蒙古科技大学, 2015.

    Google Scholar

    YANG Z G. Study on the escape of Fluorine, potassium and sodium during roasting of Bayan Obo iron Concentrate[D]. Baotou: Inner Mongolia University of Science and Technology, 2015.

    Google Scholar

    [5] 张芳. 白云鄂博铁精矿焙烧过程氟化物逸出机理研究[D]. 北京: 北京科技大学, 2015.

    Google Scholar

    ZHANG F. Study on the mechanism of fluoride escape during the roasting of Bayan Obo iron concentrate[D]. Beijing: University of Science and Technology Beijing, 2015.

    Google Scholar

    [6] ZHANG Y, ZHANG Q. Flow process and energy release of hydrogen in fluorine[J]. International Journal of Hydrogen Energy, 2023, 48(5): 2044−2054. doi: 10.1016/j.ijhydene.2022.10.094

    CrossRef Google Scholar

    [7] 宋忠宝, 栗亚芝, 张江华, 等. 一种重要的非金属资源−萤石矿的开发及利用[J]. 西北地质, 2005(4): 54−59.

    Google Scholar

    SONG Z B, LI Y Z, ZHANG J H, et al. Development and utilization of fluorite ore, an important non-metallic resource[J]. Northwestern Geology, 2005(4): 54−59.

    Google Scholar

    [8] 朱建光. 萤石浮选的几个问题[J]. 国外金属矿选矿, 2004(6): 4−9.

    Google Scholar

    ZHU J G. Several problems of fluorite flotation[J]. Mineral Processing of Metal Ore Abroad, 2004(6): 4−9.

    Google Scholar

    [9] 许宁. 磷肥工业废气中氟资源的综合利用[J]. 江苏化工, 2006(15): 17−19.

    Google Scholar

    XU N. Comprehensive utilization of fluorine resources in waste gas of phosphate fertilizer industry[J]. Chemical Industry in Jiangsu Province, 2006(15): 17−19.

    Google Scholar

    [10] 覃武林. 高碱抑制硫铁矿及活化浮选机理研究[D]. 长沙: 中南大学, 2009.

    Google Scholar

    TAN W L. Study on mechanism of high alkali inhibiting pyrite and activated flotation[D]. Changsha: Central South University, 2009.

    Google Scholar

    [11] MILLER JD, LI J, DAVIDTZ JC, et al. A review of pyrrhotite flotation chemistry in the processing of PGM ores[J]. Minerals Engineering, 2005, 18(8): 855−865. doi: 10.1016/j.mineng.2005.02.011

    CrossRef Google Scholar

    [12] 洪秋阳. 磁黄铁矿晶体化学和可浮性研究[D]. 长沙: 中南大学, 2011.

    Google Scholar

    HONG Q Y. Study on crystal chemistry and floatability of pyrrhotite[D]. Changsha: Central South University, 2011.

    Google Scholar

    [13] 洪秋阳, 汤玉和, 王毓华, 等. 磁黄铁矿结构性质与可浮性差异研究[J]. 金属矿山, 2011(1): 64−67.

    Google Scholar

    HONG Q Y, TANG Y H, WANG Y H, et al. Study on structural properties and floatability difference of pyrrhotite[J]. Metal Mine, 2011(1): 64−67.

    Google Scholar

    [14] 梁冬云, 何国伟, 邹霓. 磁黄铁矿的同质多象变体及其选别性质差异[J]. 广东有色金属学报, 1997(1): 1−5.

    Google Scholar

    LIANG D Y, HE G W, ZOU N. Homogenous polyimage variants of pyrrhotite and their differences in sorting properties[J]. Guangdong Journal of Nonferrous Metals, 1997(1): 1−5.

    Google Scholar

    [15] 陈北辰. 强化磁黄铁矿浮选因素的探讨[J]. 化工矿山技术, 1986(1): 13−15.

    Google Scholar

    CHEN B C. Discussion on strengthening flotation factors of pyrrhotite[J]. Chemical Mining Technology, 1986(1): 13−15.

    Google Scholar

    [16] LASKOWSKI J, XU Z, YOON R. Energy barrier in particle−to−bubble attachment and its effect on flotation kinetics[J]. Industrie Minerale Mines Et Carrieres Les Techniques, 1992: 95.

    Google Scholar

    [17] 95/00859 Environmental geochemistry of sulfide oxidation[J]. 1995, 36(1): 50.

    Google Scholar

    [18] ARVIDSON B, KLEMETTI M, KNUUTINEN T, et al. Flotation of pyrrhotite to produce magnetite concentrates with a sulphur level below 0.05% w/w[J]. Minerals Engineering, 2013, 50: 4−12.

    Google Scholar

    [19] 程建忠, 刘占全, 耿郑州, 等. 高硫磁铁矿浮选脱硫工艺及机理研究现状[J]. 矿产保护与利用, 2013(5): 51−54.

    Google Scholar

    CHENG J Z, LIU Z Q, GENG Z Z, et al. Research status of flotation desulfurization technology and mechanism of high sulfur magnetite[J]. Conservation and Utilization of Mentral Resources, 2013(5): 51−54.

    Google Scholar

    [20] 刘能云, 邓海波, 王虹. 分离高硫磁铁矿中磁黄铁矿的研究进展[J]. 有色矿冶, 2009, 25(5): 17−20.

    Google Scholar

    LIU N Y, DENG H B, WANG H. Research progress on separation of pyrrhotite from high sulfur magnetite[J]. Non-Ferrous Metallurgy, 2009, 25(5): 17−20.

    Google Scholar

    [21] HE M F, QIN W Q, LI W Z, et al. Flotation performances of polymorphic pyrrhotite[J]. Journal of Central South University, 2012, 19(1): 238−243. doi: 10.1007/s11771-012-0997-2

    CrossRef Google Scholar

    [22] CHANDRA A, GERSON A. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite[J]. Advances in Colloid and Interface Science, 2009, 145(1/2): 97−110. doi: 10.1016/j.cis.2008.09.001

    CrossRef Google Scholar

    [23] 杨菊, 吴熙群, 李成必. 难选磁黄铁矿浮选工艺研究[J]. 有色金属(选矿部分), 2002(4): 11−13.

    Google Scholar

    YANG J, WU X Q, LI C B. Study on flotation process of refractory pyrrhotite[J]. Non-Ferrous Metals (Beneficiation part), 2002(4): 11−13.

    Google Scholar

    [24] 张建超. 高硫铁精矿反浮选脱硫试验[J]. 现代矿业, 2020, 36(7): 125−127.

    Google Scholar

    ZHANG J C. Desulphurization experiment of high sulfur iron concentrate by reverse flotation[J]. Modern Mining, 2020, 36(7): 125−127.

    Google Scholar

    [25] 李博琦, 谢贤, 纪翠翠, 等. 吉林某选厂铁精矿脱硫试验研究[J]. 有色金属工程, 2021, 11(4): 88−95.

    Google Scholar

    LI B Q, XIE X, JI C C, et al. Experimental study on desulphurization of iron Concentrate in Jilin Concentrator[J]. Non-Ferrous Engineering, 2021, 11(4): 88−95.

    Google Scholar

    [26] 谢峰, 童雄, 吕晋芳. 云南某低品位难选磁铁矿选矿试验研究[J]. 矿冶, 2011, 20(4): 47−50.

    Google Scholar

    XIE F, TONG X, LV J F. Experimental study on beneficiation of a low—grade refractory magnetite from Yunnan[J]. Mining and Metallurgy, 2011, 20(4): 47−50.

    Google Scholar

    [27] 刘兴华, 李淑菲, 袁致涛, 等. 朝阳新华钼矿铁精矿脱硫试验研究[J]. 有色矿冶, 2011, 27(4): 23−26.

    Google Scholar

    LIU X H, LI S F, YUAN Z T, et al. Flotation desulfurizafion of iron concentrate in chaoyang Xinhua molybdenum mine[J]. Non-Ferrous Mining and Metallurgy, 2011, 27(4): 23−26.

    Google Scholar

    [28] 徐修生. 磁黄铁矿与磁铁矿分离的试验研究[J]. 金属矿山, 2004(6): 36−39.

    Google Scholar

    XU X S. Test research on separation of pyrrohotite from magnetite[J]. Metal Mine, 2004(6): 36−39.

    Google Scholar

    [29] 麦笑宇. 金山店铁矿铁精矿降硫试验研究[J]. 矿冶工程, 2005, 25(5): 30−32.

    Google Scholar

    MAI X Y. Study on the reducing sulfur in iron concentrate from Jinshandian Iron Mine[J]. Metal Materials and Metallurgy Engineering, 2005, 25(5): 30−32.

    Google Scholar

    [30] 孙炳泉. 影响磁黄铁矿可浮性因素的探讨[J]. 安徽冶金, 1991(1): 29−34.

    Google Scholar

    SUN B Q. Discussion on the factors affecting the floatability of pyrrhotite[J]. Anhui Metallurgy, 1991(1): 29−34.

    Google Scholar

    [31] 张锦瑞. 含硫磁铁矿石的选矿试验研究[J]. 矿业快报, 2000(10): 1−3.

    Google Scholar

    ZHANG J R. Experimental research on the beneficiation of sulphur-containing magnetite ore[J]. Express Information of Mining Industry, 2000(10): 1−3.

    Google Scholar

    [32] 龙冰, 谢加文, 黄伟生, 等. 柿竹园磁铁矿粗精矿提质选矿试验[J]. 矿产综合利用, 2022(4): 41−47.

    Google Scholar

    LONG B, XIE J W, HUANG W S, et al. Experimental study on beneficiation of coarse concentrate from Shizhuyuan magnetite mine[J]. Multipurpose Utilization of Mineral Resources, 2022(4): 41−47.

    Google Scholar

    [33] 孟宪瑜. 磁铁矿与磁黄铁矿的浮选分离的试验研究[J]. 有色矿冶, 2011, 27(5): 16−17. doi: 10.3969/j.issn.1007-967X.2011.05.006

    CrossRef Google Scholar

    MENG X Y. Experimental study on flotation separation of magnetite and pyrrhotite[J]. Non-Ferrous Metallurgy, 2011, 27(5): 16−17. doi: 10.3969/j.issn.1007-967X.2011.05.006

    CrossRef Google Scholar

    [34] 李亮, 徐修生. 新型活化剂MHH-1在分离磁黄铁矿与磁铁矿中的应用[J]. 矿业快报, 2004(6): 50−51.

    Google Scholar

    LI L, XU X S. Application of novel activator MHH-1 in separation of pyrrhotite and magnetite[J]. Express Information of Mining Industry, 2004(6): 50−51.

    Google Scholar

    [35] 黄荣强, 阙绍娟. 某铁精矿降硫试验[J]. 现代矿业, 2013, 29(6): 102−104.

    Google Scholar

    HUANG R Q, QUE S J. Test on sulfur reduction of an iron concentrate[J]. Modern Mining, 2013, 29(6): 102−104.

    Google Scholar

    [36] 宁发添. 某进口铁矿石磁选铁精矿浮选脱硫试验研究[J]. 大众科技, 2021, 23(10): 38−40. doi: 10.3969/j.issn.1008-1151.2021.10.012

    CrossRef Google Scholar

    NING F T. Experimental study on desulphurization by flotation of magnetic separation concentrate of imported iron ore[J]. Popular Science and Technology, 2021, 23(10): 38−40. doi: 10.3969/j.issn.1008-1151.2021.10.012

    CrossRef Google Scholar

    [37] 李桂芹. 含有磁黄铁矿的铁矿石选别中硫的活化[J]. 化工矿山技术, 1996(6): 27−29.

    Google Scholar

    LI G Q. Activation of sulfur in the separation of iron ore containing pyrrhotite[J]. Chemical Mining Technology, 1996(6): 27−29.

    Google Scholar

    [38] 常富强. 云南龙陵含硫铁矿石降硫试验研究[D]. 昆明: 昆明理工大学, 2011.

    Google Scholar

    CHANG F Q. Experimental study on sulfur reduction of sulfur-bearing iron ore from Longling, Yunnan province[D]. Kunming: Kunming University of Science and Technology, 2011.

    Google Scholar

    [39] 杨云, 赵冠飞, 刘松, 等. 磁黄铁矿活化剂及机理研究现状[J]. 矿冶工程, 2012, 32(z1): 290-293.

    Google Scholar

    YANG Y, ZHAO G F, LIU S, et al. Research status of pyrrhotite activator and its mechanism[J]. Mining and Metallurgical Engineering, 2012, 32(z1): 290-293.

    Google Scholar

    [40] COMSTOCK M. Environmental geochemistry of sulfide oxidation, copyright, 1993 advisory board, foreword[J]. ACS Books, 1994.

    Google Scholar

    [41] 覃武林, 孙伟, 张英, 等. 基于交流阻抗技术的磁黄铁矿活化浮选研究[J]. 矿冶工程, 2009, 29(2): 32−35.

    Google Scholar

    TAN W L, SUN W, ZHANG Y et al. Study on activated flotation of pyrrhotite based on AC impedance technology[J]. Metal Materials and Metallurgy Engineering, 2009, 29(2): 32−35.

    Google Scholar

    [42] 黄红军. 低活性难选硫铁矿高效活化应用基础研究[D]. 长沙: 中南大学, 2011.

    Google Scholar

    HUANG H J. Basic research on high efficiency activation of refractory pyrite with low activity[D]. Changsha: Central South University, 2011.

    Google Scholar

    [43] XI X J, KELEBEK Ş. Activation of xanthate flotation of pyrite by ammonium salts following it's depression by lime[Z]. Elsevier, 2000, 13: C8b-C43b.

    Google Scholar

    [44] 彭会清, 李禄宏, 徐林. 某铁精矿浮选脱硫试验研究[J]. 金属矿山, 2005(12): 35−37. doi: 10.3321/j.issn:1001-1250.2005.12.010

    CrossRef Google Scholar

    PENG H Q, LI L H, XU L. Experimental study on desulphurization by flotation of an iron concentrate[J]. Metal Mine, 2005(12): 35−37. doi: 10.3321/j.issn:1001-1250.2005.12.010

    CrossRef Google Scholar

    [45] 牛福生, 白丽梅, 吴根, 等. 宣钢龙烟鲕状赤铁矿强磁—反浮选试验研究[J]. 金属矿山, 2008(2): 49−52.

    Google Scholar

    NIU F S, BAI L M, WU G, et al. Experimental study on high intensity magnetic-reverse flotation of Longyan oolitic hematite from Xuangang[J]. Metal Mine, 2008(2): 49−52.

    Google Scholar

    [46] WU B C, DENG S, WANG H Y, et al. Insight into the degradation of ammonium dibutyl dithiophosphate by natural pyrrhotite-activated peroxydisulfate: Activation mechanisms, DFT studies[J]. Chemical Engineering Journal, 2020, 401: 126105. doi: 10.1016/j.cej.2020.126105

    CrossRef Google Scholar

    [47] 周庆华, 崔毅琦, 童雄. 国内外磁黄铁矿浮选的研究概况[J]. 金属矿山, 2005(5): 24−26.

    Google Scholar

    ZHOU Q H, CUI Y Q, TONG X. Research overview of pyrrhotite flotation at home and abroad[J]. Metal Mine, 2005(5): 24−26.

    Google Scholar

    [48] 王志强, 吕宪俊, 褚会超, 等. 尾矿的火山灰活性及其在水泥混合材料中的应用[J]. 硅酸盐通报, 2017, 36(1): 97−103.

    Google Scholar

    WANG Z Q, LU X J, CHU H C,et al. The volcanic ash activity of the tailings and its application in cement mixed materials[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(1): 97−103.

    Google Scholar

    [49] BOZKERT V, XU Z, FINCH J. Pentlandite/pymhotite interaction and xanthate adorption[J]. Int J Miner Process, 1998, 52: 203−214. doi: 10.1016/S0301-7516(97)00072-0

    CrossRef Google Scholar

    [50] 陆长龙. 朝阳新华钼矿铁精矿脱硫试验研究[D]. 沈阳: 东北大学, 2008.

    Google Scholar

    LU Z L. Experimental study on desulphurization of iron concentrate from Chaoyang Xinhua molybdenum mine[D]. Shenyang: Northeastern University, 2008.

    Google Scholar

    [51] 王云亮. 铁精矿提质降硫试验研究与生产实践[J]. 中国矿山工程, 2006(1): 41−44.

    Google Scholar

    WANG Y L. Experimental research and production practice on quality improvement and sulfur reduction of iron concentrate[J]. China Mine Engineering, 2006(1): 41−44.

    Google Scholar

    [52] 刘晓菲, 马英强, 邹元辉, 等. 磁黄铁矿浮选分离研究进展[J]. 世界有色金属, 2017(8): 241−242.

    Google Scholar

    LIU X F, MA Y Q, ZOU Y H, et al. Research progress in flotation separation of pyrrhotite[J]. Non-Ferrous Metals of the World, 2017(8): 241−242.

    Google Scholar

    [53] KWONG E. Abiotic and biotic pyrrhotite dissolution[D]. University of Waterloo, 1995.

    Google Scholar

    [54] 王淀佐, 李宏煦, 阮仁满. 硫化矿的生物冶金及其研究进展[J]. 矿冶, 2002, 11(z1): 8−12,59. doi: 10.3969/j.issn.1005-7854.2002.z1.002

    CrossRef Google Scholar

    WANG D Z, LI H X, RUAN R M. Research progress in bio-metallurgy of sulfide ore[J]. Mining and Metallurgy, 2002, 11(z1): 8−12,59. doi: 10.3969/j.issn.1005-7854.2002.z1.002

    CrossRef Google Scholar

    [55] THIEMAN W. Introduction to biotechnology[M]. Pearson Education India, 2009.

    Google Scholar

    [56] BASKAR C, BASKAR S, DHILLON R. Biomass conversion: The interface of biotechnology, chemistry and materials science[M]. Springer Science & Business Media, 2012.

    Google Scholar

    [57] CHEN S, QIU G Z, QIN W Q, et al. Bioleaching of sphalerite by acidithiobacillus ferrooxidans and acidithiobacillus thiooxidans cultured in 9K medium modified with pyrrhotite[J]. Journal of Central South University of Technology, 2008, 15(4): 503−507. doi: 10.1007/s11771-008-0095-7

    CrossRef Google Scholar

    [58] GLEISNER M, HERBERT J, KOCKUM P. Pyrite oxidation by acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J]. Chemical Geology, 2006, 225(1/2): 16−29. doi: 10.1016/j.chemgeo.2005.07.020

    CrossRef Google Scholar

    [59] 田翱宇. 硫铁矿烧渣的微生物脱硫的试验研究[D]. 武汉: 武汉理工大学, 2004.

    Google Scholar

    TIAN A Y. Experimental study on microbial desulfurization of pyrite cinder[D]. Wuhan: Wuhan University of Technology, 2004.

    Google Scholar

    [60] 卢梦. 嗜酸菌对铁精矿的沥浸脱硫研究及安全评价[D].天津: 天津理工大学,2021.

    Google Scholar

    Research and safety evaluation of leaching desulfurization of iron concentrate by acidophilus [D].Tianjin, Tianjin University of Technology, 2021.

    Google Scholar

    [61] 刘德洪, 金文杰, 朱新宇. 微生物法脱除大石桥硫铁矿烧渣中硫的研究[J]. 工业安全与环保, 2006, 32(8): 10−11. doi: 10.3969/j.issn.1001-425X.2006.08.004

    CrossRef Google Scholar

    LIU D H, JIN W J, ZHU X Y. Research on removing sulfur from Dashiqiao pyrite slag with microorganism[J]. Industrial Safety and Environmental Protection, 2006, 32(8): 10−11. doi: 10.3969/j.issn.1001-425X.2006.08.004

    CrossRef Google Scholar

    [62] QIN, S.Y., LIU, X.L., LU, M. Acidithiobacillus ferrooxidans and mixed acidophilic microbiota oxidation to remove sulphur impurity from iron concentrate[J]. Biochemical Engineering Journal, 2022, 187.

    Google Scholar

    [63] CUI X L, ZUO H E, WEN J K, et al. Bioleaching and desulfurization of pyrite roasting residues by NB bacteria for the recovery of Cu, Zn and the magnetic materials[C]. Trans Tech Publ, 2017: 451-455.

    Google Scholar

    [64] 贺治国, 钟慧, 胡岳华, 等. 金属硫化矿生物浸出过程微生物多样性及复杂界面作用机理[Z]. 2014.

    Google Scholar

    HE Z G, ZHONG H, HU YH, et al. Microbial diversity and complex interfacial mechanism of metal sulfide ore bioleaching process[Z]. 2014.

    Google Scholar

    [65] 李邦梅. 嗜酸氧化亚铁硫杆菌分离鉴定及其与硫化矿物相互作用的研究[D]. 长沙: 中南大学, 2007.

    Google Scholar

    LI B M. Isolation and identification of acidithiobacillus ferrooxidans and their interaction with sulfide minerals[D]. Changsha: Central South University, 2007.

    Google Scholar

    [66] RAWLINGS D. Biomining: theory, microbes and industrial processes[M]. Springer Science & Business Media, 2013.

    Google Scholar

    [67] 张雁生. 低品位原生硫化铜矿的细菌浸出研究[D]. 长沙: 中南大学, 2007.

    Google Scholar

    ZHANG Y S. Study on bacterial leaching of low grade primary copper sulfide ore[D]. Changsha: Central South University, 2007.

    Google Scholar

    [68] 张仕奇, 杨洪英, 佟琳琳, 等. 硫化矿细菌浸出机理及协同作用研究现状[J]. 有色金属(冶炼部分), 2021(4): 1−10.

    Google Scholar

    ZHANG S Q, YANG H Y, TONG L L, et al. Research status of bacterial leaching mechanism and synergistic action of sulfide ore[J]. Non-Ferrous Metal (smelting part), 2021(4): 1−10.

    Google Scholar

    [69] SAMPSON M, PHILLIPS C, BALL A. Investigation of the attachment of thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis[J]. Minerals Engineering, 2000, 13(6): 643−656. doi: 10.1016/S0892-6875(00)00046-7

    CrossRef Google Scholar

    [70] SAND W, GEHRKE T, JOZSA P, et al. (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching[J]. Hydrometallurgy, 2001, 59(2-3): 159−175. doi: 10.1016/S0304-386X(00)00180-8

    CrossRef Google Scholar

    [71] LACEY D, LAWSON F. Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidens[J]. Biotechnology and Bioengineering, 1970, 12(1): 29−50. doi: 10.1002/bit.260120104

    CrossRef Google Scholar

    [72] WASSERMAN E, FELMY A. Computation of the electrical double layer properties of semipermeable membranes in multicomponent electrolytes[J]. Applied and Environmental Microbiology, 1998, 64(6): 2295−2300. doi: 10.1128/AEM.64.6.2295-2300.1998

    CrossRef Google Scholar

    [73] WAKAO N, MISHINA M, SAKURAI Y, et al. Bacterial pyrite oxidation Ⅲ. Adsorption of thiobacillus ferrooxidans cells on solid surfaces and its effect on iron release from pyrite[J]. The Journal of General and Applied Microbiology, 1984, 30(1): 63−77. doi: 10.2323/jgam.30.63

    CrossRef Google Scholar

    [74] 金哲男, 徐家振, 符岩. 细菌浸出技术处理低品位铜矿的应用现状和前景[J]. 有色矿冶, 2000(1): 24−26.

    Google Scholar

    JIN Z N, XU J Z, FU Y. Application status and prospect of bacterial leaching for treatment of low grade copper ore[J]. Non-Ferrous Metallurgy, 2000(1): 24−26.

    Google Scholar

    [75] 刘能云, 邓海波, 王虹. 分离高硫磁铁矿中磁黄铁矿的研究进展[J]. 有色矿冶, 2009, 25(5): 17−20.

    Google Scholar

    LIU N Y, DENG H B, WANG H. Research progress on separation of pyrrhotite from high-sulfur magnetite[J]. Non-ferrous metallurgy, 2009, 25(5): 17−20.

    Google Scholar

    [76] 常文. 蒙古矿浮选脱硫试验研究与生产应用[D].内蒙古, 内蒙古科技大学,2021.

    Google Scholar

    CHANG, W. Review on the progress of mineral microbial leaching[D]. Inner Mongolia, Inner Mongolia University of Science and Technology,2021.

    Google Scholar

    [77] 马崇振. 国外某高硫铁矿提铁降硫试验研究[J]. 矿冶工程, 2022, 42(3): 76−79.

    Google Scholar

    MA C Z. Study on iron extraction and sulfur reduction of a high pyrite abroad[J]. Metal Materials and Metallurgy Engineering, 2022, 42(3): 76−79.

    Google Scholar

    [78] 齐银山, 张业清, 张清河, 等. 山东牟平某尾矿选铁工艺研究[J]. 矿业快报, 2006(12): 44−46.

    Google Scholar

    QI Y S, ZHANG Y Q, ZHANG Q H, et al. Study on iron separation process of a tailing from Muping, Shandong Province[J]. Express Information of Mining Industry, 2006(12): 44−46.

    Google Scholar

    [79] 李永亭, 张云龙. 蒙古国某含硫磁铁精矿脱硫试验研究[J]. 现代矿业, 2021, 37(9): 142−145.

    Google Scholar

    LI Y T, ZHANG Y L. Experimental study on desulphurization of a magnet concentrate containing sulfur in Mongolia[J]. Modern Mining Industry, 2021, 37(9): 142−145.

    Google Scholar

    [80] 罗帅, 刘全军, 杨绍晶. 云南某高硫铁矿脱硫试验研究[J]. 矿业研究与开发, 2019, 39(3): 15−19.

    Google Scholar

    LUO, LIU Q J, YANG S J. Experimental study on desulfurization of a high pyrite in Yunnan Province[J]. Mining Research and Development, 2019, 39(3): 15−19.

    Google Scholar

    [81] 赵志强, 戴惠新. 云南某高硫铁矿石深度降硫试验研究[J]. 金属矿山, 2007(8): 31−33.

    Google Scholar

    ZHAO Z Q, DAI H X. Experimental study on deep sulfur reduction of a high sulfur iron ore in Yunnan[J]. Metal Mine, 2007(8): 31−33.

    Google Scholar

    [82] 刘占华, 孙体昌, 孙昊, 等. 从内蒙古某高硫铁尾矿中回收铁的研究[J]. 矿冶工程, 2012, 32(1): 46−49. doi: 10.3969/j.issn.0253-6099.2012.01.013

    CrossRef Google Scholar

    LIU Z H, SUN T C, SUN H, et al. Study on recovery of iron from a high sulfur iron tailings in Inner Mongolia[J]. Metal Materials and Metallurgy Engineering, 2012, 32(1): 46−49. doi: 10.3969/j.issn.0253-6099.2012.01.013

    CrossRef Google Scholar

    [83] 余俊, 葛英勇. 西部铜业巴彦淖尔高硫铁矿焙烧-磁选-浮选试验研究[J]. 现代矿业, 2010, 26(1): 102−104. doi: 10.3969/j.issn.1674-6082.2010.01.030

    CrossRef Google Scholar

    YU J, GE Y. Experimental study on roasting-magnetic separation-flotation of Bayannur high pyrite in western copper industry[J]. Modern Mining, 2010, 26(1): 102−104. doi: 10.3969/j.issn.1674-6082.2010.01.030

    CrossRef Google Scholar

    [84] MOROZOV V, BALDAUF H, SCHUBERT H. On the role of the ion composition of the aqueous phase in the flotation of fluorite and calcite[J]. International Journal of Mineral Processing, 1992, 35(3/4): 177−189. doi: 10.1016/0301-7516(92)90032-R

    CrossRef Google Scholar

    [85] 康德伟, 李解, 李保卫, 等. 白云鄂博磁选铁精矿提铁降氟试验[J]. 金属矿山, 2017(9): 78−81.

    Google Scholar

    KANG D W, LI J, LI B W, et al. Experiment on iron improvement and fluorine Reduction of magnetic iron concentrate from Bayan Obo[J]. Metal Mine, 2017(9): 78−81.

    Google Scholar

    [86] 石小敏, 于慧梅. 餐饮废油制备JZQ-F捕收剂及其铁精矿脱氟试验研究[J]. 有色金属(选矿部分), 2022(4): 111−116.

    Google Scholar

    Shi Xiaomin, Yu Huimei. Experimental study on preparation of JZQ-F collector from catering waste oil and its defluorination of iron concentrate[J]. Nonferrous Metals (Mineral Processing), 2022(4): 111−116.

    Google Scholar

    [87] 康德伟, 李解, 李保卫等. 不同捕收剂对铁精矿提铁降氟的影响[J]. 矿产综合利用, 2018, 212(4): 58−61.

    Google Scholar

    KANG D W, LI X, LI B, et al. Effects of different collectors on iron extraction and fluorine reduction of iron concentrate[J]. Comprehensive Utilization of Mineral Resources, 2018, 212(4): 58−61.

    Google Scholar

    [88] 欧阳崇钟, 刘兴华, 马鸣泽, 等. 某高氟铁矿脱氟工艺研究[J]. 矿冶工程, 2021, 41(2): 59−62. doi: 10.3969/j.issn.0253-6099.2021.02.014

    CrossRef Google Scholar

    OUYANG C Z, LIU X H, MA M Z, et al. Study on defluorination technology of a high fluoride iron ore[J]. Metal Materials and Metallurgy Engineering, 2021, 41(2): 59−62. doi: 10.3969/j.issn.0253-6099.2021.02.014

    CrossRef Google Scholar

    [89] 温贵, 刘亚峰, 程素苹. 包钢白云鄂博铁矿磁铁矿选矿工艺研究[J]. 现代矿业, 2009, 25(5): 97−98. doi: 10.3969/j.issn.1674-6082.2009.05.030

    CrossRef Google Scholar

    WEN G, LIU Y F, CHENG S P. Research on magnetite beneficiation technology of Bayan Obo iron mine of Baotou steel[J]. Modern Mining Industry, 2009, 25(5): 97−98. doi: 10.3969/j.issn.1674-6082.2009.05.030

    CrossRef Google Scholar

    [90] 丘世澄, 胡真, 邱显扬. 某难选萤石矿浮选试验研究[J]. 金属矿山, 2019(12): 103−107.

    Google Scholar

    QIU S C, HU Z, QIU X Y. Experimental study on flotation of a refractory fluorite ore[J]. Metal Mine, 2019(12): 103−107.

    Google Scholar

    [91] 张波, 李解, 张雪峰, 等. Cu2+, Fe3+对萤石浮选的活化作用机制[J]. 稀有金属, 2016, 40(9): 963−968.

    Google Scholar

    ZHANG B, LI J, ZHANG X F, et al. Activation mechanism of Cu2+, Fe3+ on fluorite flotation[J]. Rare Metal, 2016, 40(9): 963−968.

    Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(1)

Tables(1)

Article Metrics

Article views(588) PDF downloads(35) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint