Citation: | XIAO Wei, YANG Juan, LIU Jianfei, SONG Qun, LI Hongjing, ZHANG He, YU Junfu. Research Progress in Desulphurization and Defluorination of Magnetite Concentrate[J]. Conservation and Utilization of Mineral Resources, 2023, 43(4): 155-164. doi: 10.13779/j.cnki.issn1001-0076.2023.08.003 |
Magnetite concentrate is one of the raw materials of iron and steel industry. The removal of harmful impurities sulfur and fluorine is a technical problem faced by mineral processing industry for a long time. This paper summarizes the desulphurization and defluorination technology of high sulfur fluorine magnetite concentrate, especially the application of flotation method in the desulphurization and defluorination process of magnetite concentrate. At the same time, a new method of synchronous reverse flotation desulphurization and defluorination is put forward, and suggestions for future research on desulphurization and defluorination technology of magnetite concentrate are put forward.
[1] | 饶峰, 童雄, 黄宇林, 等. 云南文山某铁精矿脱硫的试验研究[J]. 云南冶金, 2007(5): 13−16. RAO F, TONG X, HUANG Y L, et al. Experimental study on desulfurization of an iron concentrate from Wenshan, Yunnan Province[J]. Yunnan Metallurgy, 2007(5): 13−16. |
[2] | 张鸣一. 铁精矿焙烧过程中氟化物生成的热力学与动力学[D]. 包头: 内蒙古科技大学, 2014. ZHANG M Y. Thermodynamics and kinetics of fluoride formation during roasting of iron concentrate[D]. Baotou: Inner Mongolia University of Science and Technology, 2014. |
[3] | 蔡隆九, 宋玉萍, 王伟华. 包钢的氟污染及其治理[J]. 包钢科技, 2002(1): 78−80. CAI L J, SONG Y P, WANG W H. Fluorine pollution of Baotou Steel and its treatment[J]. Baotou Steel Technology, 2002(1): 78−80. |
[4] | 杨振刚. 白云鄂博铁精矿焙烧过程氟、钾、钠逸出研究[D]. 包头: 内蒙古科技大学, 2015. YANG Z G. Study on the escape of Fluorine, potassium and sodium during roasting of Bayan Obo iron Concentrate[D]. Baotou: Inner Mongolia University of Science and Technology, 2015. |
[5] | 张芳. 白云鄂博铁精矿焙烧过程氟化物逸出机理研究[D]. 北京: 北京科技大学, 2015. ZHANG F. Study on the mechanism of fluoride escape during the roasting of Bayan Obo iron concentrate[D]. Beijing: University of Science and Technology Beijing, 2015. |
[6] | ZHANG Y, ZHANG Q. Flow process and energy release of hydrogen in fluorine[J]. International Journal of Hydrogen Energy, 2023, 48(5): 2044−2054. doi: 10.1016/j.ijhydene.2022.10.094 |
[7] | 宋忠宝, 栗亚芝, 张江华, 等. 一种重要的非金属资源−萤石矿的开发及利用[J]. 西北地质, 2005(4): 54−59. SONG Z B, LI Y Z, ZHANG J H, et al. Development and utilization of fluorite ore, an important non-metallic resource[J]. Northwestern Geology, 2005(4): 54−59. |
[8] | 朱建光. 萤石浮选的几个问题[J]. 国外金属矿选矿, 2004(6): 4−9. ZHU J G. Several problems of fluorite flotation[J]. Mineral Processing of Metal Ore Abroad, 2004(6): 4−9. |
[9] | 许宁. 磷肥工业废气中氟资源的综合利用[J]. 江苏化工, 2006(15): 17−19. XU N. Comprehensive utilization of fluorine resources in waste gas of phosphate fertilizer industry[J]. Chemical Industry in Jiangsu Province, 2006(15): 17−19. |
[10] | 覃武林. 高碱抑制硫铁矿及活化浮选机理研究[D]. 长沙: 中南大学, 2009. TAN W L. Study on mechanism of high alkali inhibiting pyrite and activated flotation[D]. Changsha: Central South University, 2009. |
[11] | MILLER JD, LI J, DAVIDTZ JC, et al. A review of pyrrhotite flotation chemistry in the processing of PGM ores[J]. Minerals Engineering, 2005, 18(8): 855−865. doi: 10.1016/j.mineng.2005.02.011 |
[12] | 洪秋阳. 磁黄铁矿晶体化学和可浮性研究[D]. 长沙: 中南大学, 2011. HONG Q Y. Study on crystal chemistry and floatability of pyrrhotite[D]. Changsha: Central South University, 2011. |
[13] | 洪秋阳, 汤玉和, 王毓华, 等. 磁黄铁矿结构性质与可浮性差异研究[J]. 金属矿山, 2011(1): 64−67. HONG Q Y, TANG Y H, WANG Y H, et al. Study on structural properties and floatability difference of pyrrhotite[J]. Metal Mine, 2011(1): 64−67. |
[14] | 梁冬云, 何国伟, 邹霓. 磁黄铁矿的同质多象变体及其选别性质差异[J]. 广东有色金属学报, 1997(1): 1−5. LIANG D Y, HE G W, ZOU N. Homogenous polyimage variants of pyrrhotite and their differences in sorting properties[J]. Guangdong Journal of Nonferrous Metals, 1997(1): 1−5. |
[15] | 陈北辰. 强化磁黄铁矿浮选因素的探讨[J]. 化工矿山技术, 1986(1): 13−15. CHEN B C. Discussion on strengthening flotation factors of pyrrhotite[J]. Chemical Mining Technology, 1986(1): 13−15. |
[16] | LASKOWSKI J, XU Z, YOON R. Energy barrier in particle−to−bubble attachment and its effect on flotation kinetics[J]. Industrie Minerale Mines Et Carrieres Les Techniques, 1992: 95. |
[17] | 95/00859 Environmental geochemistry of sulfide oxidation[J]. 1995, 36(1): 50. |
[18] | ARVIDSON B, KLEMETTI M, KNUUTINEN T, et al. Flotation of pyrrhotite to produce magnetite concentrates with a sulphur level below 0.05% w/w[J]. Minerals Engineering, 2013, 50: 4−12. |
[19] | 程建忠, 刘占全, 耿郑州, 等. 高硫磁铁矿浮选脱硫工艺及机理研究现状[J]. 矿产保护与利用, 2013(5): 51−54. CHENG J Z, LIU Z Q, GENG Z Z, et al. Research status of flotation desulfurization technology and mechanism of high sulfur magnetite[J]. Conservation and Utilization of Mentral Resources, 2013(5): 51−54. |
[20] | 刘能云, 邓海波, 王虹. 分离高硫磁铁矿中磁黄铁矿的研究进展[J]. 有色矿冶, 2009, 25(5): 17−20. LIU N Y, DENG H B, WANG H. Research progress on separation of pyrrhotite from high sulfur magnetite[J]. Non-Ferrous Metallurgy, 2009, 25(5): 17−20. |
[21] | HE M F, QIN W Q, LI W Z, et al. Flotation performances of polymorphic pyrrhotite[J]. Journal of Central South University, 2012, 19(1): 238−243. doi: 10.1007/s11771-012-0997-2 |
[22] | CHANDRA A, GERSON A. A review of the fundamental studies of the copper activation mechanisms for selective flotation of the sulfide minerals, sphalerite and pyrite[J]. Advances in Colloid and Interface Science, 2009, 145(1/2): 97−110. doi: 10.1016/j.cis.2008.09.001 |
[23] | 杨菊, 吴熙群, 李成必. 难选磁黄铁矿浮选工艺研究[J]. 有色金属(选矿部分), 2002(4): 11−13. YANG J, WU X Q, LI C B. Study on flotation process of refractory pyrrhotite[J]. Non-Ferrous Metals (Beneficiation part), 2002(4): 11−13. |
[24] | 张建超. 高硫铁精矿反浮选脱硫试验[J]. 现代矿业, 2020, 36(7): 125−127. ZHANG J C. Desulphurization experiment of high sulfur iron concentrate by reverse flotation[J]. Modern Mining, 2020, 36(7): 125−127. |
[25] | 李博琦, 谢贤, 纪翠翠, 等. 吉林某选厂铁精矿脱硫试验研究[J]. 有色金属工程, 2021, 11(4): 88−95. LI B Q, XIE X, JI C C, et al. Experimental study on desulphurization of iron Concentrate in Jilin Concentrator[J]. Non-Ferrous Engineering, 2021, 11(4): 88−95. |
[26] | 谢峰, 童雄, 吕晋芳. 云南某低品位难选磁铁矿选矿试验研究[J]. 矿冶, 2011, 20(4): 47−50. XIE F, TONG X, LV J F. Experimental study on beneficiation of a low—grade refractory magnetite from Yunnan[J]. Mining and Metallurgy, 2011, 20(4): 47−50. |
[27] | 刘兴华, 李淑菲, 袁致涛, 等. 朝阳新华钼矿铁精矿脱硫试验研究[J]. 有色矿冶, 2011, 27(4): 23−26. LIU X H, LI S F, YUAN Z T, et al. Flotation desulfurizafion of iron concentrate in chaoyang Xinhua molybdenum mine[J]. Non-Ferrous Mining and Metallurgy, 2011, 27(4): 23−26. |
[28] | 徐修生. 磁黄铁矿与磁铁矿分离的试验研究[J]. 金属矿山, 2004(6): 36−39. XU X S. Test research on separation of pyrrohotite from magnetite[J]. Metal Mine, 2004(6): 36−39. |
[29] | 麦笑宇. 金山店铁矿铁精矿降硫试验研究[J]. 矿冶工程, 2005, 25(5): 30−32. MAI X Y. Study on the reducing sulfur in iron concentrate from Jinshandian Iron Mine[J]. Metal Materials and Metallurgy Engineering, 2005, 25(5): 30−32. |
[30] | 孙炳泉. 影响磁黄铁矿可浮性因素的探讨[J]. 安徽冶金, 1991(1): 29−34. SUN B Q. Discussion on the factors affecting the floatability of pyrrhotite[J]. Anhui Metallurgy, 1991(1): 29−34. |
[31] | 张锦瑞. 含硫磁铁矿石的选矿试验研究[J]. 矿业快报, 2000(10): 1−3. ZHANG J R. Experimental research on the beneficiation of sulphur-containing magnetite ore[J]. Express Information of Mining Industry, 2000(10): 1−3. |
[32] | 龙冰, 谢加文, 黄伟生, 等. 柿竹园磁铁矿粗精矿提质选矿试验[J]. 矿产综合利用, 2022(4): 41−47. LONG B, XIE J W, HUANG W S, et al. Experimental study on beneficiation of coarse concentrate from Shizhuyuan magnetite mine[J]. Multipurpose Utilization of Mineral Resources, 2022(4): 41−47. |
[33] | 孟宪瑜. 磁铁矿与磁黄铁矿的浮选分离的试验研究[J]. 有色矿冶, 2011, 27(5): 16−17. doi: 10.3969/j.issn.1007-967X.2011.05.006 MENG X Y. Experimental study on flotation separation of magnetite and pyrrhotite[J]. Non-Ferrous Metallurgy, 2011, 27(5): 16−17. doi: 10.3969/j.issn.1007-967X.2011.05.006 |
[34] | 李亮, 徐修生. 新型活化剂MHH-1在分离磁黄铁矿与磁铁矿中的应用[J]. 矿业快报, 2004(6): 50−51. LI L, XU X S. Application of novel activator MHH-1 in separation of pyrrhotite and magnetite[J]. Express Information of Mining Industry, 2004(6): 50−51. |
[35] | 黄荣强, 阙绍娟. 某铁精矿降硫试验[J]. 现代矿业, 2013, 29(6): 102−104. HUANG R Q, QUE S J. Test on sulfur reduction of an iron concentrate[J]. Modern Mining, 2013, 29(6): 102−104. |
[36] | 宁发添. 某进口铁矿石磁选铁精矿浮选脱硫试验研究[J]. 大众科技, 2021, 23(10): 38−40. doi: 10.3969/j.issn.1008-1151.2021.10.012 NING F T. Experimental study on desulphurization by flotation of magnetic separation concentrate of imported iron ore[J]. Popular Science and Technology, 2021, 23(10): 38−40. doi: 10.3969/j.issn.1008-1151.2021.10.012 |
[37] | 李桂芹. 含有磁黄铁矿的铁矿石选别中硫的活化[J]. 化工矿山技术, 1996(6): 27−29. LI G Q. Activation of sulfur in the separation of iron ore containing pyrrhotite[J]. Chemical Mining Technology, 1996(6): 27−29. |
[38] | 常富强. 云南龙陵含硫铁矿石降硫试验研究[D]. 昆明: 昆明理工大学, 2011. CHANG F Q. Experimental study on sulfur reduction of sulfur-bearing iron ore from Longling, Yunnan province[D]. Kunming: Kunming University of Science and Technology, 2011. |
[39] | 杨云, 赵冠飞, 刘松, 等. 磁黄铁矿活化剂及机理研究现状[J]. 矿冶工程, 2012, 32(z1): 290-293. YANG Y, ZHAO G F, LIU S, et al. Research status of pyrrhotite activator and its mechanism[J]. Mining and Metallurgical Engineering, 2012, 32(z1): 290-293. |
[40] | COMSTOCK M. Environmental geochemistry of sulfide oxidation, copyright, 1993 advisory board, foreword[J]. ACS Books, 1994. |
[41] | 覃武林, 孙伟, 张英, 等. 基于交流阻抗技术的磁黄铁矿活化浮选研究[J]. 矿冶工程, 2009, 29(2): 32−35. TAN W L, SUN W, ZHANG Y et al. Study on activated flotation of pyrrhotite based on AC impedance technology[J]. Metal Materials and Metallurgy Engineering, 2009, 29(2): 32−35. |
[42] | 黄红军. 低活性难选硫铁矿高效活化应用基础研究[D]. 长沙: 中南大学, 2011. HUANG H J. Basic research on high efficiency activation of refractory pyrite with low activity[D]. Changsha: Central South University, 2011. |
[43] | XI X J, KELEBEK Ş. Activation of xanthate flotation of pyrite by ammonium salts following it's depression by lime[Z]. Elsevier, 2000, 13: C8b-C43b. |
[44] | 彭会清, 李禄宏, 徐林. 某铁精矿浮选脱硫试验研究[J]. 金属矿山, 2005(12): 35−37. doi: 10.3321/j.issn:1001-1250.2005.12.010 PENG H Q, LI L H, XU L. Experimental study on desulphurization by flotation of an iron concentrate[J]. Metal Mine, 2005(12): 35−37. doi: 10.3321/j.issn:1001-1250.2005.12.010 |
[45] | 牛福生, 白丽梅, 吴根, 等. 宣钢龙烟鲕状赤铁矿强磁—反浮选试验研究[J]. 金属矿山, 2008(2): 49−52. NIU F S, BAI L M, WU G, et al. Experimental study on high intensity magnetic-reverse flotation of Longyan oolitic hematite from Xuangang[J]. Metal Mine, 2008(2): 49−52. |
[46] | WU B C, DENG S, WANG H Y, et al. Insight into the degradation of ammonium dibutyl dithiophosphate by natural pyrrhotite-activated peroxydisulfate: Activation mechanisms, DFT studies[J]. Chemical Engineering Journal, 2020, 401: 126105. doi: 10.1016/j.cej.2020.126105 |
[47] | 周庆华, 崔毅琦, 童雄. 国内外磁黄铁矿浮选的研究概况[J]. 金属矿山, 2005(5): 24−26. ZHOU Q H, CUI Y Q, TONG X. Research overview of pyrrhotite flotation at home and abroad[J]. Metal Mine, 2005(5): 24−26. |
[48] | 王志强, 吕宪俊, 褚会超, 等. 尾矿的火山灰活性及其在水泥混合材料中的应用[J]. 硅酸盐通报, 2017, 36(1): 97−103. WANG Z Q, LU X J, CHU H C,et al. The volcanic ash activity of the tailings and its application in cement mixed materials[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(1): 97−103. |
[49] | BOZKERT V, XU Z, FINCH J. Pentlandite/pymhotite interaction and xanthate adorption[J]. Int J Miner Process, 1998, 52: 203−214. doi: 10.1016/S0301-7516(97)00072-0 |
[50] | 陆长龙. 朝阳新华钼矿铁精矿脱硫试验研究[D]. 沈阳: 东北大学, 2008. LU Z L. Experimental study on desulphurization of iron concentrate from Chaoyang Xinhua molybdenum mine[D]. Shenyang: Northeastern University, 2008. |
[51] | 王云亮. 铁精矿提质降硫试验研究与生产实践[J]. 中国矿山工程, 2006(1): 41−44. WANG Y L. Experimental research and production practice on quality improvement and sulfur reduction of iron concentrate[J]. China Mine Engineering, 2006(1): 41−44. |
[52] | 刘晓菲, 马英强, 邹元辉, 等. 磁黄铁矿浮选分离研究进展[J]. 世界有色金属, 2017(8): 241−242. LIU X F, MA Y Q, ZOU Y H, et al. Research progress in flotation separation of pyrrhotite[J]. Non-Ferrous Metals of the World, 2017(8): 241−242. |
[53] | KWONG E. Abiotic and biotic pyrrhotite dissolution[D]. University of Waterloo, 1995. |
[54] | 王淀佐, 李宏煦, 阮仁满. 硫化矿的生物冶金及其研究进展[J]. 矿冶, 2002, 11(z1): 8−12,59. doi: 10.3969/j.issn.1005-7854.2002.z1.002 WANG D Z, LI H X, RUAN R M. Research progress in bio-metallurgy of sulfide ore[J]. Mining and Metallurgy, 2002, 11(z1): 8−12,59. doi: 10.3969/j.issn.1005-7854.2002.z1.002 |
[55] | THIEMAN W. Introduction to biotechnology[M]. Pearson Education India, 2009. |
[56] | BASKAR C, BASKAR S, DHILLON R. Biomass conversion: The interface of biotechnology, chemistry and materials science[M]. Springer Science & Business Media, 2012. |
[57] | CHEN S, QIU G Z, QIN W Q, et al. Bioleaching of sphalerite by acidithiobacillus ferrooxidans and acidithiobacillus thiooxidans cultured in 9K medium modified with pyrrhotite[J]. Journal of Central South University of Technology, 2008, 15(4): 503−507. doi: 10.1007/s11771-008-0095-7 |
[58] | GLEISNER M, HERBERT J, KOCKUM P. Pyrite oxidation by acidithiobacillus ferrooxidans at various concentrations of dissolved oxygen[J]. Chemical Geology, 2006, 225(1/2): 16−29. doi: 10.1016/j.chemgeo.2005.07.020 |
[59] | 田翱宇. 硫铁矿烧渣的微生物脱硫的试验研究[D]. 武汉: 武汉理工大学, 2004. TIAN A Y. Experimental study on microbial desulfurization of pyrite cinder[D]. Wuhan: Wuhan University of Technology, 2004. |
[60] | 卢梦. 嗜酸菌对铁精矿的沥浸脱硫研究及安全评价[D].天津: 天津理工大学,2021. Research and safety evaluation of leaching desulfurization of iron concentrate by acidophilus [D].Tianjin, Tianjin University of Technology, 2021. |
[61] | 刘德洪, 金文杰, 朱新宇. 微生物法脱除大石桥硫铁矿烧渣中硫的研究[J]. 工业安全与环保, 2006, 32(8): 10−11. doi: 10.3969/j.issn.1001-425X.2006.08.004 LIU D H, JIN W J, ZHU X Y. Research on removing sulfur from Dashiqiao pyrite slag with microorganism[J]. Industrial Safety and Environmental Protection, 2006, 32(8): 10−11. doi: 10.3969/j.issn.1001-425X.2006.08.004 |
[62] | QIN, S.Y., LIU, X.L., LU, M. Acidithiobacillus ferrooxidans and mixed acidophilic microbiota oxidation to remove sulphur impurity from iron concentrate[J]. Biochemical Engineering Journal, 2022, 187. |
[63] | CUI X L, ZUO H E, WEN J K, et al. Bioleaching and desulfurization of pyrite roasting residues by NB bacteria for the recovery of Cu, Zn and the magnetic materials[C]. Trans Tech Publ, 2017: 451-455. |
[64] | 贺治国, 钟慧, 胡岳华, 等. 金属硫化矿生物浸出过程微生物多样性及复杂界面作用机理[Z]. 2014. HE Z G, ZHONG H, HU YH, et al. Microbial diversity and complex interfacial mechanism of metal sulfide ore bioleaching process[Z]. 2014. |
[65] | 李邦梅. 嗜酸氧化亚铁硫杆菌分离鉴定及其与硫化矿物相互作用的研究[D]. 长沙: 中南大学, 2007. LI B M. Isolation and identification of acidithiobacillus ferrooxidans and their interaction with sulfide minerals[D]. Changsha: Central South University, 2007. |
[66] | RAWLINGS D. Biomining: theory, microbes and industrial processes[M]. Springer Science & Business Media, 2013. |
[67] | 张雁生. 低品位原生硫化铜矿的细菌浸出研究[D]. 长沙: 中南大学, 2007. ZHANG Y S. Study on bacterial leaching of low grade primary copper sulfide ore[D]. Changsha: Central South University, 2007. |
[68] | 张仕奇, 杨洪英, 佟琳琳, 等. 硫化矿细菌浸出机理及协同作用研究现状[J]. 有色金属(冶炼部分), 2021(4): 1−10. ZHANG S Q, YANG H Y, TONG L L, et al. Research status of bacterial leaching mechanism and synergistic action of sulfide ore[J]. Non-Ferrous Metal (smelting part), 2021(4): 1−10. |
[69] | SAMPSON M, PHILLIPS C, BALL A. Investigation of the attachment of thiobacillus ferrooxidans to mineral sulfides using scanning electron microscopy analysis[J]. Minerals Engineering, 2000, 13(6): 643−656. doi: 10.1016/S0892-6875(00)00046-7 |
[70] | SAND W, GEHRKE T, JOZSA P, et al. (Bio) chemistry of bacterial leaching—direct vs. indirect bioleaching[J]. Hydrometallurgy, 2001, 59(2-3): 159−175. doi: 10.1016/S0304-386X(00)00180-8 |
[71] | LACEY D, LAWSON F. Kinetics of the liquid-phase oxidation of acid ferrous sulfate by the bacterium Thiobacillus ferrooxidens[J]. Biotechnology and Bioengineering, 1970, 12(1): 29−50. doi: 10.1002/bit.260120104 |
[72] | WASSERMAN E, FELMY A. Computation of the electrical double layer properties of semipermeable membranes in multicomponent electrolytes[J]. Applied and Environmental Microbiology, 1998, 64(6): 2295−2300. doi: 10.1128/AEM.64.6.2295-2300.1998 |
[73] | WAKAO N, MISHINA M, SAKURAI Y, et al. Bacterial pyrite oxidation Ⅲ. Adsorption of thiobacillus ferrooxidans cells on solid surfaces and its effect on iron release from pyrite[J]. The Journal of General and Applied Microbiology, 1984, 30(1): 63−77. doi: 10.2323/jgam.30.63 |
[74] | 金哲男, 徐家振, 符岩. 细菌浸出技术处理低品位铜矿的应用现状和前景[J]. 有色矿冶, 2000(1): 24−26. JIN Z N, XU J Z, FU Y. Application status and prospect of bacterial leaching for treatment of low grade copper ore[J]. Non-Ferrous Metallurgy, 2000(1): 24−26. |
[75] | 刘能云, 邓海波, 王虹. 分离高硫磁铁矿中磁黄铁矿的研究进展[J]. 有色矿冶, 2009, 25(5): 17−20. LIU N Y, DENG H B, WANG H. Research progress on separation of pyrrhotite from high-sulfur magnetite[J]. Non-ferrous metallurgy, 2009, 25(5): 17−20. |
[76] | 常文. 蒙古矿浮选脱硫试验研究与生产应用[D].内蒙古, 内蒙古科技大学,2021. CHANG, W. Review on the progress of mineral microbial leaching[D]. Inner Mongolia, Inner Mongolia University of Science and Technology,2021. |
[77] | 马崇振. 国外某高硫铁矿提铁降硫试验研究[J]. 矿冶工程, 2022, 42(3): 76−79. MA C Z. Study on iron extraction and sulfur reduction of a high pyrite abroad[J]. Metal Materials and Metallurgy Engineering, 2022, 42(3): 76−79. |
[78] | 齐银山, 张业清, 张清河, 等. 山东牟平某尾矿选铁工艺研究[J]. 矿业快报, 2006(12): 44−46. QI Y S, ZHANG Y Q, ZHANG Q H, et al. Study on iron separation process of a tailing from Muping, Shandong Province[J]. Express Information of Mining Industry, 2006(12): 44−46. |
[79] | 李永亭, 张云龙. 蒙古国某含硫磁铁精矿脱硫试验研究[J]. 现代矿业, 2021, 37(9): 142−145. LI Y T, ZHANG Y L. Experimental study on desulphurization of a magnet concentrate containing sulfur in Mongolia[J]. Modern Mining Industry, 2021, 37(9): 142−145. |
[80] | 罗帅, 刘全军, 杨绍晶. 云南某高硫铁矿脱硫试验研究[J]. 矿业研究与开发, 2019, 39(3): 15−19. LUO, LIU Q J, YANG S J. Experimental study on desulfurization of a high pyrite in Yunnan Province[J]. Mining Research and Development, 2019, 39(3): 15−19. |
[81] | 赵志强, 戴惠新. 云南某高硫铁矿石深度降硫试验研究[J]. 金属矿山, 2007(8): 31−33. ZHAO Z Q, DAI H X. Experimental study on deep sulfur reduction of a high sulfur iron ore in Yunnan[J]. Metal Mine, 2007(8): 31−33. |
[82] | 刘占华, 孙体昌, 孙昊, 等. 从内蒙古某高硫铁尾矿中回收铁的研究[J]. 矿冶工程, 2012, 32(1): 46−49. doi: 10.3969/j.issn.0253-6099.2012.01.013 LIU Z H, SUN T C, SUN H, et al. Study on recovery of iron from a high sulfur iron tailings in Inner Mongolia[J]. Metal Materials and Metallurgy Engineering, 2012, 32(1): 46−49. doi: 10.3969/j.issn.0253-6099.2012.01.013 |
[83] | 余俊, 葛英勇. 西部铜业巴彦淖尔高硫铁矿焙烧-磁选-浮选试验研究[J]. 现代矿业, 2010, 26(1): 102−104. doi: 10.3969/j.issn.1674-6082.2010.01.030 YU J, GE Y. Experimental study on roasting-magnetic separation-flotation of Bayannur high pyrite in western copper industry[J]. Modern Mining, 2010, 26(1): 102−104. doi: 10.3969/j.issn.1674-6082.2010.01.030 |
[84] | MOROZOV V, BALDAUF H, SCHUBERT H. On the role of the ion composition of the aqueous phase in the flotation of fluorite and calcite[J]. International Journal of Mineral Processing, 1992, 35(3/4): 177−189. doi: 10.1016/0301-7516(92)90032-R |
[85] | 康德伟, 李解, 李保卫, 等. 白云鄂博磁选铁精矿提铁降氟试验[J]. 金属矿山, 2017(9): 78−81. KANG D W, LI J, LI B W, et al. Experiment on iron improvement and fluorine Reduction of magnetic iron concentrate from Bayan Obo[J]. Metal Mine, 2017(9): 78−81. |
[86] | 石小敏, 于慧梅. 餐饮废油制备JZQ-F捕收剂及其铁精矿脱氟试验研究[J]. 有色金属(选矿部分), 2022(4): 111−116. Shi Xiaomin, Yu Huimei. Experimental study on preparation of JZQ-F collector from catering waste oil and its defluorination of iron concentrate[J]. Nonferrous Metals (Mineral Processing), 2022(4): 111−116. |
[87] | 康德伟, 李解, 李保卫等. 不同捕收剂对铁精矿提铁降氟的影响[J]. 矿产综合利用, 2018, 212(4): 58−61. KANG D W, LI X, LI B, et al. Effects of different collectors on iron extraction and fluorine reduction of iron concentrate[J]. Comprehensive Utilization of Mineral Resources, 2018, 212(4): 58−61. |
[88] | 欧阳崇钟, 刘兴华, 马鸣泽, 等. 某高氟铁矿脱氟工艺研究[J]. 矿冶工程, 2021, 41(2): 59−62. doi: 10.3969/j.issn.0253-6099.2021.02.014 OUYANG C Z, LIU X H, MA M Z, et al. Study on defluorination technology of a high fluoride iron ore[J]. Metal Materials and Metallurgy Engineering, 2021, 41(2): 59−62. doi: 10.3969/j.issn.0253-6099.2021.02.014 |
[89] | 温贵, 刘亚峰, 程素苹. 包钢白云鄂博铁矿磁铁矿选矿工艺研究[J]. 现代矿业, 2009, 25(5): 97−98. doi: 10.3969/j.issn.1674-6082.2009.05.030 WEN G, LIU Y F, CHENG S P. Research on magnetite beneficiation technology of Bayan Obo iron mine of Baotou steel[J]. Modern Mining Industry, 2009, 25(5): 97−98. doi: 10.3969/j.issn.1674-6082.2009.05.030 |
[90] | 丘世澄, 胡真, 邱显扬. 某难选萤石矿浮选试验研究[J]. 金属矿山, 2019(12): 103−107. QIU S C, HU Z, QIU X Y. Experimental study on flotation of a refractory fluorite ore[J]. Metal Mine, 2019(12): 103−107. |
[91] | 张波, 李解, 张雪峰, 等. Cu2+, Fe3+对萤石浮选的活化作用机制[J]. 稀有金属, 2016, 40(9): 963−968. ZHANG B, LI J, ZHANG X F, et al. Activation mechanism of Cu2+, Fe3+ on fluorite flotation[J]. Rare Metal, 2016, 40(9): 963−968. |
Direct/indirect mechanism of bacterial leaching of sulfide minerals